Exploring and mitigating potential bias when genetic instrumental variables are associated with multiple non-exposure traits in Mendelian randomization

[1]  M. Glymour,et al.  Mendelian randomization , 2022, Nature Reviews Methods Primers.

[2]  M. Munafo,et al.  A robust method for collider bias correction in conditional genome-wide association studies , 2022, Nature Communications.

[3]  K. Tilling,et al.  Estimation of causal effects of a time-varying exposure at multiple time points through multivariable mendelian randomization , 2022, medRxiv.

[4]  V. Didelez,et al.  Interpretation of Mendelian randomization using a single measure of an exposure that varies over time , 2021, medRxiv.

[5]  David M. Evans,et al.  Higher maternal adiposity reduces offspring birthweight if associated with a metabolically favourable profile , 2021, Diabetologia.

[6]  D. Lawlor,et al.  Bias in two-sample Mendelian randomization when using heritable covariable-adjusted summary associations , 2021, International journal of epidemiology.

[7]  G. Davey Smith,et al.  The use of negative control outcomes in Mendelian randomization to detect potential population stratification , 2021, International journal of epidemiology.

[8]  D. Léger,et al.  Impact of sleep on female and male reproductive functions: a systematic review. , 2020, Fertility and sterility.

[9]  E. T. Tchetgen Tchetgen,et al.  On Mendelian Randomization Mixed-Scale Treatment Effect Robust Identification (MR MiSTERI) and Estimation for Causal Inference , 2020, medRxiv.

[10]  H. Tiemeier,et al.  Mendelian randomisation approaches to the study of prenatal exposures: A systematic review , 2020, Paediatric and perinatal epidemiology.

[11]  A. Auton,et al.  Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses , 2020, Nature Communications.

[12]  G. Davey Smith,et al.  The use of negative control outcomes in Mendelian Randomisation to detect potential population stratification or selection bias , 2020, bioRxiv.

[13]  D. Scholtens,et al.  Higher maternal adiposity reduces offspring birth weight if associated with a metabolically favourable profile , 2020, medRxiv.

[14]  J. Bowden,et al.  Testing and correcting for weak and pleiotropic instruments in two‐sample multivariable Mendelian randomization , 2020, bioRxiv.

[15]  M. Tobin,et al.  Identifying potential causal effects of age at menarche: a Mendelian randomization phenome-wide association study , 2020, BMC Medicine.

[16]  Tom R. Gaunt,et al.  Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization framework , 2020, Nature Communications.

[17]  Neil M Davies,et al.  Population phenomena inflate genetic associations of complex social traits , 2019, Science Advances.

[18]  S. A. Au Yeung,et al.  Use of Multivariable Mendelian Randomization to Address Biases Due to Competing Risk Before Recruitment , 2019, Frontiers in Genetics.

[19]  S. Swanson,et al.  Mendelian randomization with multiple exposures: the importance of thinking about time. , 2019, International journal of epidemiology.

[20]  David M. Evans,et al.  Within family Mendelian randomization studies. , 2019, Human molecular genetics.

[21]  G. Smith,et al.  Mendelian randomisation for mediation analysis: current methods and challenges for implementation , 2019, bioRxiv.

[22]  D. Lawlor,et al.  Bias in two-sample Mendelian randomization by using covariable-adjusted summary associations , 2019, bioRxiv.

[23]  J. Thompson,et al.  Association of Supine Going-to-Sleep Position in Late Pregnancy With Reduced Birth Weight , 2019, JAMA network open.

[24]  Samuel E. Jones,et al.  Investigating causal relations between sleep traits and risk of breast cancer in women: mendelian randomisation study , 2019, BMJ.

[25]  P. Koellinger,et al.  Mendelian randomization: the challenge of unobserved environmental confounds , 2019, International journal of epidemiology.

[26]  G. Davey Smith,et al.  Commentary: Orienting causal relationships between two phenotypes using bidirectional Mendelian randomization. , 2019, International journal of epidemiology.

[27]  D. Conti,et al.  Elucidation of causal direction between asthma and obesity: a bi-directional Mendelian randomization study. , 2019, International journal of epidemiology.

[28]  E. Walton,et al.  A cross-disorder PRS-pheWAS of 5 major psychiatric disorders in UK Biobank , 2019, bioRxiv.

[29]  S. Denaxas,et al.  The relationship between sleep duration, cognition and dementia: a Mendelian randomization study , 2019, International journal of epidemiology.

[30]  Mark R. Hurle,et al.  Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases , 2019, bioRxiv.

[31]  G. Smith,et al.  Proxy gene-by-environment Mendelian randomization study confirms a causal effect of maternal smoking on offspring birthweight, but little evidence of long-term influences on offspring health , 2019, bioRxiv.

[32]  Rachael A. Hughes,et al.  Selection Bias When Estimating Average Treatment Effects Using One-sample Instrumental Variable Analysis , 2019, Epidemiology.

[33]  Harold Snieder,et al.  The genetics of depression: successful genome-wide association studies introduce new challenges , 2019, Translational Psychiatry.

[34]  D. Lawlor,et al.  A Mendelian Randomization dictionary: Useful definitions and descriptions for undertaking, understanding and interpreting Mendelian Randomization studies , 2019 .

[35]  Tom R. Gaunt,et al.  Searching for the causal effects of body mass index in over 300 000 participants in UK Biobank, using Mendelian randomization , 2019, PLoS genetics.

[36]  Christopher N. Foley,et al.  Factorial Mendelian randomization: using genetic variants to assess interactions , 2019, bioRxiv.

[37]  D. Lawson,et al.  Apparent latent structure within the UK Biobank sample has implications for epidemiological analysis , 2019, Nature Communications.

[38]  Samuel E. Jones,et al.  Evidence of a causal relationship between body mass index and psoriasis: A mendelian randomization study , 2019, PLoS medicine.

[39]  Helen E. Parkinson,et al.  The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 , 2018, Nucleic Acids Res..

[40]  Sonja A Swanson,et al.  Interpretation and Potential Biases of Mendelian Randomization Estimates With Time-Varying Exposures. , 2018, American journal of epidemiology.

[41]  George Davey Smith,et al.  Guidelines for performing Mendelian randomization investigations: update for summer 2023 , 2019, Wellcome open research.

[42]  Henning Tiemeier,et al.  Application of the Instrumental Inequalities to a Mendelian Randomization Study With Multiple Proposed Instruments , 2019, Epidemiology.

[43]  A. Auton,et al.  Genome-wide analysis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways , 2019, Nature Genetics.

[44]  Tom R. Gaunt,et al.  MR-TRYX: Exploiting horizontal pleiotropy to infer novel causal pathways , 2018, bioRxiv.

[45]  Tom R. Gaunt,et al.  MR-TRYX: A Mendelian randomization framework that exploits horizontal pleiotropy to infer novel causal pathways , 2018 .

[46]  M. Munafo,et al.  MR-pheWAS with stratification and interaction: Searching for the causal effects of smoking heaviness identified an effect on facial aging , 2018, bioRxiv.

[47]  Kyle J. Gaulton,et al.  Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors , 2018, Nature Genetics.

[48]  Nuala A Sheehan,et al.  Adjustment for index event bias in genome-wide association studies of subsequent events , 2018, Nature Communications.

[49]  J. Dorrian,et al.  Maternal sleep during pregnancy and poor fetal outcomes: A scoping review of the literature with meta-analysis. , 2018, Sleep medicine reviews.

[50]  I. Deary,et al.  Education, intelligence and Alzheimer’s disease: evidence from a multivariable two-sample Mendelian randomization study , 2018, bioRxiv.

[51]  Tom R. Gaunt,et al.  Integrating Mendelian randomization and multiple-trait colocalization to uncover cell-specific inflammatory drivers of autoimmune and atopic disease , 2018, bioRxiv.

[52]  M. Hernán,et al.  The challenging interpretation of instrumental variable estimates under monotonicity. , 2018, International journal of epidemiology.

[53]  G. Davey Smith,et al.  Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians , 2018, British Medical Journal.

[54]  F. Hartwig,et al.  Bias in Mendelian randomization due to assortative mating , 2018, Genetic epidemiology.

[55]  Jack Bowden,et al.  Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression , 2018, International journal of epidemiology.

[56]  S. Swanson,et al.  Understanding the Assumptions Underlying Instrumental Variable Analyses: a Brief Review of Falsification Strategies and Related Tools , 2018, Current Epidemiology Reports.

[57]  D. Lawlor,et al.  Exploring the association of genetic factors with participation in the Avon Longitudinal Study of Parents and Children , 2018, International journal of epidemiology.

[58]  G. Davey Smith,et al.  Evaluating the potential role of pleiotropy in Mendelian randomization studies , 2018, Human molecular genetics.

[59]  F. Windmeijer,et al.  An examination of multivariable Mendelian randomization in the single-sample and two-sample summary data settings , 2018, bioRxiv.

[60]  B. Neale,et al.  Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases , 2018, Nature Genetics.

[61]  Valeriia Haberland,et al.  The MR-Base platform supports systematic causal inference across the human phenome , 2018, eLife.

[62]  S. Burgess,et al.  Contextualizing selection bias in Mendelian randomization: how bad is it likely to be? , 2018, International journal of epidemiology.

[63]  M. Munafo,et al.  Is smoking heaviness causally associated with alcohol use? A Mendelian randomization study in four European cohorts , 2018, International journal of epidemiology.

[64]  Robert M. Maier,et al.  Causal associations between risk factors and common diseases inferred from GWAS summary data , 2017, Nature Communications.

[65]  P. Koellinger,et al.  Genetic instrumental variable regression: Explaining socioeconomic and health outcomes in nonexperimental data , 2017, Proceedings of the National Academy of Sciences.

[66]  G. Davey Smith,et al.  Orienting the causal relationship between imprecisely measured traits using GWAS summary data , 2017, PLoS genetics.

[67]  A. Price,et al.  Distinguishing genetic correlation from causation across 52 diseases and complex traits , 2017, Nature Genetics.

[68]  Eric J. Tchetgen Tchetgen,et al.  The GENIUS Approach to Robust Mendelian Randomization Inference , 2017, bioRxiv.

[69]  Wen Zhang,et al.  A Bayesian Framework for Multiple Trait Colocalization from Summary Association Statistics , 2017, bioRxiv.

[70]  M. Shima,et al.  Maternal sleep and small for gestational age infants in the Japan Environment and Children’s Study: a cohort study , 2017, BMC Research Notes.

[71]  Fernando Pires Hartwig,et al.  Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption , 2017, bioRxiv.

[72]  C. Sudlow,et al.  Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population , 2017, American journal of epidemiology.

[73]  David M. Evans,et al.  Collider scope: when selection bias can substantially influence observed associations , 2016, bioRxiv.

[74]  G. Davey Smith,et al.  Genetic epidemiology and Mendelian randomization for informing disease therapeutics: Conceptual and methodological challenges , 2017, bioRxiv.

[75]  Neil M Davies,et al.  Software Application Profile: PHESANT: a tool for performing automated phenome scans in UK Biobank , 2017, International journal of epidemiology.

[76]  David M. Evans,et al.  Using Mendelian randomization to determine causal effects of maternal pregnancy (intrauterine) exposures on offspring outcomes: Sources of bias and methods for assessing them , 2017, Wellcome open research.

[77]  Debbie A Lawlor,et al.  Triangulation in aetiological epidemiology , 2016, International journal of epidemiology.

[78]  N. Eriksson,et al.  Genome-wide analysis identifies 12 loci influencing human reproductive behavior , 2016 .

[79]  Neil M Davies,et al.  How to compare instrumental variable and conventional regression analyses using negative controls and bias plots , 2016, Journal of Epidemiology & Community Health.

[80]  P. Visscher,et al.  A plethora of pleiotropy across complex traits , 2016, Nature Genetics.

[81]  Stephen Burgess,et al.  PhenoScanner: a database of human genotype–phenotype associations , 2016, Bioinform..

[82]  D. Lawlor Commentary: Two-sample Mendelian randomization: opportunities and challenges , 2016, International journal of epidemiology.

[83]  Jon White,et al.  Role of Adiponectin in Coronary Heart Disease Risk , 2016, Circulation research.

[84]  G. Davey Smith,et al.  Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator , 2016, Genetic epidemiology.

[85]  Jonathan P. Beauchamp,et al.  Genome-wide association study identifies 74 loci associated with educational attainment , 2016, Nature.

[86]  P. Visscher,et al.  Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets , 2016, Nature Genetics.

[87]  David M. Evans,et al.  Genetic Evidence for Causal Relationships Between Maternal Obesity-Related Traits and Birth Weight. , 2016, JAMA.

[88]  Joseph K. Pickrell,et al.  Detection and interpretation of shared genetic influences on 42 human traits , 2015, Nature Genetics.

[89]  N. Timpson,et al.  MR-PheWAS: hypothesis prioritization among potential causal effects of body mass index on many outcomes, using Mendelian randomization , 2015, Scientific Reports.

[90]  Stefan Johansson,et al.  Assessing the Causal Relationship of Maternal Height on Birth Size and Gestational Age at Birth: A Mendelian Randomization Analysis , 2015, PLoS medicine.

[91]  John W Jackson,et al.  Toward a clearer portrayal of confounding bias in instrumental variable applications. , 2015, Epidemiology.

[92]  G. Davey Smith,et al.  Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression , 2015, International journal of epidemiology.

[93]  N. Timpson,et al.  Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors , 2015, European Journal of Epidemiology.

[94]  Ross M. Fraser,et al.  Genetic studies of body mass index yield new insights for obesity biology , 2015, Nature.

[95]  A. Butterworth,et al.  Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways , 2014, International journal of epidemiology.

[96]  G. Davey Smith,et al.  Mendelian randomization: genetic anchors for causal inference in epidemiological studies , 2014, Human molecular genetics.

[97]  Dylan S. Small,et al.  Instrumental Variables Estimation With Some Invalid Instruments and its Application to Mendelian Randomization , 2014, 1401.5755.

[98]  C. Wallace,et al.  Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics , 2013, PLoS genetics.

[99]  Ross M. Fraser,et al.  Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits , 2013, PLoS genetics.

[100]  Neil M Davies,et al.  Issues in the reporting and conduct of instrumental variable studies: a systematic review. , 2013, Epidemiology.

[101]  R. Collins What makes UK Biobank special? , 2012, The Lancet.

[102]  J. Robins,et al.  American Journal of Epidemiology Practice of Epidemiology Credible Mendelian Randomization Studies: Approaches for Evaluating the Instrumental Variable Assumptions , 2022 .

[103]  Jeremy B Sussman,et al.  An IV for the RCT: using instrumental variables to adjust for treatment contamination in randomised controlled trials , 2010, BMJ : British Medical Journal.

[104]  William J. Astle,et al.  Population Structure and Cryptic Relatedness in Genetic Association Studies , 2009, 1010.4681.

[105]  George Davey Smith,et al.  Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology , 2008, Statistics in medicine.

[106]  Sebastian Schneeweiss,et al.  Preference-Based Instrumental Variable Methods for the Estimation of Treatment Effects: Assessing Validity and Interpreting Results , 2007, The international journal of biostatistics.

[107]  S. Ebrahim,et al.  'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? , 2003, International journal of epidemiology.

[108]  T. Moum,et al.  No Large Convergence during Marriage for Health, Lifestyle, and Personality in a Large Sample of Norwegian Spouses. , 1992 .