A compact formulation for the l21 mixed-norm minimization problem
暂无分享,去创建一个
Marc E. Pfetsch | Marius Pesavento | Christian Steffens | M. Pesavento | M. Pfetsch | Christian Steffens
[1] Emmanuel J. Candès,et al. Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..
[2] Lihua Xie,et al. On Gridless Sparse Methods for Line Spectral Estimation From Complete and Incomplete Data , 2014, IEEE Transactions on Signal Processing.
[3] D. Donoho. Superresolution via sparsity constraints , 1992 .
[4] J. Tropp. Algorithms for simultaneous sparse approximation. Part II: Convex relaxation , 2006, Signal Process..
[5] Dmitry M. Malioutov,et al. A sparse signal reconstruction perspective for source localization with sensor arrays , 2005, IEEE Transactions on Signal Processing.
[6] Thomas Strohmer,et al. General Deviants: An Analysis of Perturbations in Compressed Sensing , 2009, IEEE Journal of Selected Topics in Signal Processing.
[7] Yonina C. Eldar,et al. Rank Awareness in Joint Sparse Recovery , 2010, IEEE Transactions on Information Theory.
[8] Petre Stoica,et al. MUSIC, maximum likelihood and Cramer-Rao bound , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.
[9] Petre Stoica,et al. SPICE and LIKES: Two hyperparameter-free methods for sparse-parameter estimation , 2012, Signal Process..
[10] Stephen J. Wright. Coordinate descent algorithms , 2015, Mathematical Programming.
[11] Jie Chen,et al. Theoretical Results on Sparse Representations of Multiple-Measurement Vectors , 2006, IEEE Transactions on Signal Processing.
[12] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[13] Gongguo Tang,et al. Near minimax line spectral estimation , 2013, 2013 47th Annual Conference on Information Sciences and Systems (CISS).
[14] M. Viberg,et al. Two decades of array signal processing research: the parametric approach , 1996, IEEE Signal Process. Mag..
[15] Joel A. Tropp,et al. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit , 2006, Signal Process..
[16] R. Kumaresan,et al. Estimation of frequencies of multiple sinusoids: Making linear prediction perform like maximum likelihood , 1982, Proceedings of the IEEE.
[17] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[18] Emmanuel J. Candès,et al. Super-Resolution from Noisy Data , 2012, Journal of Fourier Analysis and Applications.
[19] Bhaskar D. Rao,et al. Support Recovery of Sparse Signals in the Presence of Multiple Measurement Vectors , 2011, IEEE Transactions on Information Theory.
[20] Jian Li,et al. Weighted SPICE: A unifying approach for hyperparameter-free sparse estimation , 2014, Digit. Signal Process..
[21] Emmanuel J. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[22] Lihua Xie,et al. Exact Joint Sparse Frequency Recovery via Optimization Methods , 2014, 1405.6585.
[23] Montse Nájar,et al. Sparse covariance fitting for direction of arrival estimation , 2012, EURASIP J. Adv. Signal Process..
[24] Jian Li,et al. SPICE: A Sparse Covariance-Based Estimation Method for Array Processing , 2011, IEEE Transactions on Signal Processing.
[25] C. Carathéodory. Über den variabilitätsbereich der fourier’schen konstanten von positiven harmonischen funktionen , 1911 .
[26] Mashud Hyder,et al. Direction-of-Arrival Estimation Using a Mixed � , 2010 .
[27] Otto Toeplitz,et al. Zur Theorie der quadratischen und bilinearen Formen von unendlichvielen Veränderlichen , 1911 .
[28] Yuejie Chi,et al. Off-the-Grid Line Spectrum Denoising and Estimation With Multiple Measurement Vectors , 2014, IEEE Transactions on Signal Processing.
[29] Stephen P. Boyd,et al. Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.
[30] Katya Scheinberg,et al. Noname manuscript No. (will be inserted by the editor) Efficient Block-coordinate Descent Algorithms for the Group Lasso , 2022 .
[31] Joel A. Tropp,et al. Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.
[32] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[33] Jian Li,et al. New Method of Sparse Parameter Estimation in Separable Models and Its Use for Spectral Analysis of Irregularly Sampled Data , 2011, IEEE Transactions on Signal Processing.
[34] Håkan Hjalmarsson,et al. A Note on the SPICE Method , 2012, IEEE Transactions on Signal Processing.
[35] Emmanuel J. Cand. Towards a Mathematical Theory of Super-Resolution , 2012 .
[36] Stephen J. Wright,et al. Simultaneous Variable Selection , 2005, Technometrics.
[37] P. Stoica,et al. The stochastic CRB for array processing: a textbook derivation , 2001, IEEE Signal Processing Letters.
[38] Gongguo Tang,et al. Sparse recovery over continuous dictionaries-just discretize , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.
[39] A. Robert Calderbank,et al. Sensitivity to Basis Mismatch in Compressed Sensing , 2010, IEEE Transactions on Signal Processing.
[40] M. Lai,et al. The null space property for sparse recovery from multiple measurement vectors , 2011 .
[41] Pablo A. Parrilo,et al. The Convex Geometry of Linear Inverse Problems , 2010, Foundations of Computational Mathematics.
[42] Benjamin Recht,et al. Atomic norm denoising with applications to line spectral estimation , 2011, Allerton.
[43] Deanna Needell,et al. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.
[44] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[45] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[46] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[47] J. Högbom,et al. APERTURE SYNTHESIS WITH A NON-REGULAR DISTRIBUTION OF INTERFEROMETER BASELINES. Commentary , 1974 .
[48] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[49] Pál Turán,et al. Über den Zusammenhang der Extremen von Harmonischen Funktionen mit Ihren Koeffizienten und Über den Picard—Landauschen Satz , 1970 .
[50] Jong Chul Ye,et al. Compressive MUSIC: A Missing Link Between Compressive Sensing and Array Signal Processing , 2010, ArXiv.
[51] Justin K. Romberg,et al. Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.
[52] Bhaskar D. Rao,et al. Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..
[53] Tapan K. Sarkar,et al. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..
[54] Mostafa Kaveh,et al. Sparse Spatial Spectral Estimation: A Covariance Fitting Algorithm, Performance and Regularization , 2013, IEEE Transactions on Signal Processing.
[55] Michael Elad,et al. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[56] Marc E. Pfetsch,et al. A Compact Formulation for the $\ell _{2,1}$ Mixed-Norm Minimization Problem , 2016, IEEE Transactions on Signal Processing.
[57] Stéphane Mallat,et al. Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..
[58] M. Kowalski. Sparse regression using mixed norms , 2009 .
[59] Bhaskar D. Rao,et al. Sparse solutions to linear inverse problems with multiple measurement vectors , 2005, IEEE Transactions on Signal Processing.
[60] Parikshit Shah,et al. Compressed Sensing Off the Grid , 2012, IEEE Transactions on Information Theory.
[61] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[62] Petre Stoica,et al. Connection between SPICE and Square-Root LASSO for sparse parameter estimation , 2014, Signal Process..
[63] Igal Bilik,et al. Spatial Compressive Sensing for Direction-of-Arrival Estimation With Bias Mitigation Via Expected Likelihood , 2013, IEEE Transactions on Signal Processing.