Phase Separation Dynamics in Isotropic Ion-Intercalation Particles

Lithium-ion batteries exhibit complex nonlinear dynamics, resulting from diffusion and phase transformations coupled to ion intercalation reactions. Using the recently developed Cahn-Hilliard reaction (CHR) theory, we investigate a simple mathematical model of ion intercalation in a spherical solid nanoparticle, which predicts transitions from solid-solution radial diffusion to two-phase shrinking-core dynamics. This general approach extends previous Li-ion battery models, which either neglect phase separation or postulate a spherical shrinking-core phase boundary, by predicting phase separation only under appropriate circumstances. The effect of the applied current is captured by generalized Butler-Volmer kinetics, formulated in terms of diffusional chemical potentials, and the model consistently links the evolving concentration profile to the battery voltage. We examine sources of charge/discharge asymmetry, such as asymmetric charge transfer and surface "wetting" by ions within the solid, which can lead to three distinct phase regions. In order to solve the fourth-order nonlinear CHR initial-boundary-value problem, a control-volume discretization is developed in spherical coordinates. The basic physics are illustrated by simulating many representative cases, including a simple model of the popular cathode material, lithium iron phosphate (neglecting crystal anisotropy and coherency strain). Analytical approximations are also derived for the voltage plateau as a function of the applied current.

[1]  Jaime Peraire,et al.  A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations , 2008, J. Comput. Phys..

[2]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .

[3]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[4]  Martin Z. Bazant,et al.  Rate-Dependent Morphology of Li2O2 Growth in Li-O2 Batteries. , 2013, The journal of physical chemistry letters.

[5]  Martin Z. Bazant,et al.  Cahn-Hilliard Reaction Model for Isotropic Li-ion Battery Particles , 2013 .

[6]  Martin Z. Bazant,et al.  Nonequilibrium Thermodynamics of Porous Electrodes , 2012, 1204.2934.

[7]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[8]  Milo R. Dorr,et al.  Anisotropic Phase Boundary Morphology in Nanoscale Olivine Electrode Particles , 2011 .

[9]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[10]  Wolfgang Dreyer,et al.  The behavior of a many-particle electrode in a lithium-ion battery , 2011 .

[11]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[12]  Yunxian Liu,et al.  A class of stable spectral methods for the Cahn-Hilliard equation , 2009, J. Comput. Phys..

[13]  S. M. Choo,et al.  Conservative nonlinear difference scheme for the Cahn-Hilliard equation—II , 1998 .

[14]  Martin Z. Bazant,et al.  Coherency Strain and the Kinetics of Phase Separation in LiFePO [subscript 4] , 2012 .

[15]  Guillermo Sapiro,et al.  Fourth order partial differential equations on general geometries , 2006, J. Comput. Phys..

[16]  Martin Z. Bazant,et al.  Particle-Level Modeling of the Charge-Discharge Behavior of Nanoparticulate Phase-Separating Li-Ion Battery Electrodes , 2013, 1309.6495.

[17]  Joseph D. Fehribach,et al.  Triple Phase Boundaries in Solid-Oxide Cathodes , 2009, SIAM J. Appl. Math..

[18]  Rahul Malik,et al.  Particle size dependence of the ionic diffusivity. , 2010, Nano letters.

[19]  M. Zackrisson,et al.  Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles – Critical issues , 2010 .

[20]  Alexander S. Mikhailov,et al.  SELF-ORGANIZED CHEMICAL NANOSCALE MICROREACTORS , 1999 .

[21]  T. M. Brown,et al.  By Electrochemical methods , 2007 .

[22]  Gerbrand Ceder,et al.  Electrochemical modeling of intercalation processes with phase field models , 2004 .

[23]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[24]  Yuki Yamada,et al.  Kinetics of Nucleation and Growth in Two-Phase Electrochemical Reaction of LixFePO4 , 2012 .

[25]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[26]  Daniel A. Cogswell,et al.  Theory of coherent nucleation in phase-separating nanoparticles. , 2013, Nano letters.

[27]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[28]  Steven Dargaville,et al.  Mathematical modelling of LiFePO4 cathodes , 2013 .

[29]  Peng Bai,et al.  Charge transfer kinetics at the solid–solid interface in porous electrodes , 2014, Nature Communications.

[30]  John E. Hilliard,et al.  Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 1959 .

[31]  Marnix Wagemaker,et al.  Dynamic solubility limits in nanosized olivine LiFePO4. , 2011, Journal of the American Chemical Society.

[32]  Steven M. Wise,et al.  Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method , 2007, J. Comput. Phys..

[33]  Martin Z. Bazant,et al.  Efficient Conservative Numerical Schemes for 1D Nonlinear Spherical Diffusion Equations with Applications in Battery Modeling , 2013 .

[34]  G. I. Barenblatt,et al.  Similarity, Self-Similarity and Intermediate Asymptotics , 1979 .

[35]  Stefan Pischinger,et al.  Quantifying the effects of strains on the conductivity and porosity of LiFePO4 based Li-ion composite cathodes using a multi-scale approach , 2011 .

[36]  W. Craig Carter,et al.  Size-Dependent Lithium Miscibility Gap in Nanoscale Li1 − x FePO4 , 2007 .

[37]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[38]  Martin Z Bazant,et al.  Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics. , 2012, Accounts of chemical research.

[39]  Martin Z. Bazant,et al.  Phase Transformation Dynamics in Porous Battery Electrodes , 2014, 1401.7072.

[40]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[41]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[42]  Wei Lai,et al.  Mathematical Modeling of Porous Battery Electrodes-Revisit of Newman's Model , 2011 .

[43]  Yan Xu,et al.  Local discontinuous Galerkin methods for the Cahn-Hilliard type equations , 2007, J. Comput. Phys..

[44]  E. Bruce Nauman,et al.  Nonlinear diffusion and phase separation , 2001 .

[45]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[46]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[47]  A. Ritchie,et al.  Recent developments and likely advances in lithium-ion batteries , 2006 .

[48]  John W. Cahn,et al.  Critical point wetting , 1977 .

[49]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[50]  Peng Bai,et al.  Statistical kinetics of phase-transforming nanoparticles in LiFePO4 porous electrodes , 2013 .

[51]  Steven Dargaville,et al.  A least squares based finite volume method for the Cahn-Hilliard and Cahn-Hilliard-reaction equations , 2015, J. Comput. Appl. Math..

[52]  Krishna Garikipati,et al.  The Role of Coherency Strains on Phase Stability in LixFePO4: Needle Crystallites Minimize Coherency Strain and Overpotential , 2009 .

[53]  J. Lowengrub,et al.  Conservative multigrid methods for Cahn-Hilliard fluids , 2004 .

[54]  Pedro E. Arce,et al.  Discharge Model for LiFePO4 Accounting for the Solid Solution Range , 2008 .

[55]  Kyle R Fenton,et al.  Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping. , 2013, Nano letters.

[56]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[57]  E. Mello,et al.  Numerical study of the Cahn–Hilliard equation in one, two and three dimensions , 2004, cond-mat/0410772.

[58]  Olga Wodo,et al.  Computationally efficient solution to the Cahn-Hilliard equation: Adaptive implicit time schemes, mesh sensitivity analysis and the 3D isoperimetric problem , 2011, J. Comput. Phys..

[59]  Anne Strauss,et al.  Kinetics Of Materials , 2016 .

[60]  W. Craig Carter,et al.  Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines , 2010 .

[61]  Ming Wang,et al.  A nonconforming finite element method for the Cahn-Hilliard equation , 2010, J. Comput. Phys..

[62]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[63]  Steven Dargaville,et al.  The persistence of phase-separation in LiFePO4 with two-dimensional Li+ transport : the Cahn-Hilliard-reaction equation and the role of defects , 2013 .

[64]  John W. Cahn,et al.  Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .

[65]  Jean-Marie Tarascon,et al.  The existence of a temperature-driven solid solution in LixFePO4 for 0 ≤ x ≤ 1 , 2005 .

[66]  Mehdi Dehghan,et al.  A numerical method based on the boundary integral equation and dual reciprocity methods for one-dimensional Cahn–Hilliard equation , 2009 .

[67]  Steven Dargaville,et al.  Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model , 2010 .

[68]  T. R. Jow,et al.  Analysis of the FePO4 to LiFePO4 phase transition , 2008 .

[69]  Alexander S. Mikhailov,et al.  Localized nonequilibrium nanostructures in surface chemical reactions , 2003 .

[70]  Pedro E. Arce,et al.  A Discharge Model for Phase Transformation Electrodes: Formulation, Experimental Validation, and Analysis , 2007 .

[71]  Damian Burch,et al.  Intercalation dynamics in lithium-ion batteries , 2009 .

[72]  W. Craig Carter,et al.  Electrochemically Induced Phase Transformation in Nanoscale Olivines Li1−xMPO4 (M = Fe, Mn) , 2008 .

[73]  W. Craig Carter,et al.  Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes , 2010 .

[74]  Wei Lai,et al.  Thermodynamics and kinetics of phase transformation in intercalation battery electrodes – phenomenological modeling , 2010 .

[75]  Jaemin Shin,et al.  A conservative numerical method for the Cahn-Hilliard equation in complex domains , 2011, J. Comput. Phys..

[76]  Yang Shao-Horn,et al.  Rate-Dependent Morphology of Li2O2 Growth in Li-O2 Batteries. , 2013, The journal of physical chemistry letters.

[77]  Robert Nürnberg,et al.  Adaptive finite element methods for Cahn-Hilliard equations , 2008 .

[78]  Ming Tang,et al.  Model for the Particle Size, Overpotential, and Strain Dependence of Phase Transition Pathways in Storage Electrodes: Application to Nanoscale Olivines , 2009 .

[79]  Hsiao-Ying Shadow Huang,et al.  Strain Accommodation during Phase Transformations in Olivine‐Based Cathodes as a Materials Selection Criterion for High‐Power Rechargeable Batteries , 2007 .

[80]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[81]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[82]  Wei Lai,et al.  Electrochemical modeling of single particle intercalation battery materials with different thermodynamics , 2011 .