Structure of host‐guest complexes of 1′,1″‐dimethyl‐dispiro[1,6,20,25‐tetraoxa[6.1.6.1]paracyclophane‐13,4′:32,4″‐bispiperidine] with benzene and p‐xylene

The molecular and crystal structures of the 1-benzene (1/2) monohydrate 2 and of the 1-p-xylene (1/1) complex 3 were determined by X-ray analysis. In both complexes the host molecules take the “face to face” conformation. In the 1-benzene (1/2) monohydrate 2 one benzene ring is perfectly enclosed within the intramolecular cavity of the host. The second benzene ring is located in channel type intermolecular cavities of the crystal lattice. The water molecule in the crystal lattice forms hydrogen bonds to the piperidine-nitrogens of neighbouring 1-molecules. – In the 1-p-xylene (1/1) complex 3 the host molecules are stacked along the a axis and p-xylene molecules are sandwiched by two adjacent host molecules in the stack. The two methyl groups of a p-xylene molecule are inserted into the cavities of the two sandwiching hosts. – The requirements for a preference of intramolecular cavity inclusion over intermolecular lattice inclusion of apolar guests in crystalline complexes of apolar macrocyclic hosts are discussed. Kristall- und Molekulstrukturen der Wirt-Gast-Komplexe von 1′,1″-Dimethyl-dispiro[1,6,20,25-tetraoxa[6.1.6.1]paracyclophan-13,4′:32, 4″-bispiperidin] mit Benzol und p-Xylol Die Molekul- und Kristallstrukturen des 1-Benzol (1/2)-Monohydrats 2 und des 1-p-Xylol (1/1)-Komplexes 3 wurden durch Rontgenstrukturanalyse bestimmt. In beiden Komplexen liegen die Wirtmolekule in der „face to face”-Konformation vor. Im 1-Benzol (1/2)-Monohydrat 2 ist ein Benzolring perfekt im intramolekularen Hohlraum des Wirtmolekuls eingeschlossen. Der zweite Benzolring ist in kanalartigen intermolekularen Hohlraumen des Kristallgitters lokalisiert. Das Wassermolekul im Kristallgitter bildet Wasserstoffbrucken-Bindungen zu den Piperidin-Stickstoffatomen benachbarter 1-Molekule aus. – Im 1-p-Xylol (1/1)-Komplex 3 stapeln die Wirtmolekule entlang der a-Achse und die p-Xylolmolekule sind zwischen zwei benachbarten Wirtmolekulen im Stapel eingelagert. Die beiden Methylgruppen eines p-Xylolmolekuls ragen in die Hohlraume der beiden umgebenden Wirtmolekule. – Die Voraussetzungen fur die Bevorzugung eines intramolekularen Hohlraumeinschlusses unpolarer Gastmolekule gegenuber einem intermolekularen Gittereinschlus in kristallinen Komplexen unpolarer makrocyclischer Wirte werden diskutiert.

[1]  F. Diederich,et al.  Water-soluble tetraoxa[n.1.n.1]paracyclophanes: Synthesis and host-guest interactions in aqueous solution , 1985 .

[2]  F. Diederich,et al.  A new water-soluble macrocyclic host of the cyclophane type: host-guest complexation with aromatic guests in aqueous solution and acceleration of the transport of arenes through an aqueous phase , 1984 .

[3]  François Diederich Komplexierung organischer Moleküle in wäßriger Lösung , 1984 .

[4]  K. Harata,et al.  X-RAY CRYSTALLOGRAPHIC DETERMINATION OF THE ABSOLUTE CONFIGURATION OF (+) FLURBIPROFEN UTILIZING β-CYCLODEXTRIN COMPLEXATION , 1984 .

[5]  H. A. Staab,et al.  Elektron‐Donor‐Acceptor‐Verbindungen, XXXIV. Höhere [n.n]Paracyclophan‐Chinhydrone: Synthese, Molekülstruktur und spektroskopische Eigenschaften , 1983 .

[6]  K. Harata,et al.  The Structure of the Cyclodextrin Complex. XVI. Crystal Structure of Heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin-p-Iodophenol (1 : 1) Complex Tetrahydrate , 1983 .

[7]  F. Vögtle,et al.  Wirt‐Gast‐Verbindungen makrocyclischer Wirtmoleküle mit Wasser, Xylol und Dioxan , 1983 .

[8]  D. Cram Cavitands: Organic Hosts with Enforced Cavities , 1983, Science.

[9]  I. Tabushi,et al.  Water soluble cyclophanes as hosts and catalysts , 1983 .

[10]  R. Schmidt,et al.  α‐Linked Disaccharides from O‐(β‐D‐Glycopyranosyl) Trichloroacetimidates using Trimethylsilyl Trifluoromethanesulfonate as Catalyst , 1982 .

[11]  F. Vögtle,et al.  A Ternary Clathrate from Cryptand, Hydroquinone and Water—Selective Formation and X-Ray Structural Analysis†‡ , 1982 .

[12]  K. Harata The Structure of the Cyclodextrin Complex. XII. Crystal Structure of α-Cyclodextrin-1-Phenylethanol (1:1) Tetrahydrate , 1982 .

[13]  F. Vögtle,et al.  Ein ternäres Clathrat aus Cryptand, Hydrochinon und Wasser ‐ Selektive Bildung und Röntgen‐Strukturanalyse , 1982 .

[14]  K. Harata,et al.  The Structure of the Cyclodextrin Complex. X. Crystal Structure of α-Cyclodextrin-Benzaldehyde (1 : 1) Complex Hexahyderate , 1981 .

[15]  K. Harata The Structure of the Cyclodextrin Complex. IX. The Crystal Structure of α-Cyclodextrin–m-Nitroaniline (1:1) Hexahydrate Complex , 1980 .

[16]  Wolfram Saenger,et al.  Cyclodextrin Inclusion Compounds in Research and Industry , 1980 .

[17]  W. Saenger Cyclodextrin‐Einschlußverbindungen in Forschung und Industrie , 1980 .

[18]  A. Itai,et al.  Host-guest complex formation between a water-soluble polyparacyclophane and a hydrophobic guest molecule , 1980 .

[19]  K. Harata,et al.  The Structure of the Cyclodextrin Complex. VI. The Crystal Structure of α-CycIodextrin–m-Nitrophenol (1 : 2) Complex , 1978 .

[20]  H. Stetter,et al.  Zur Kenntnis der makrocyclischen Ringsysteme, II. Mitteil.1): über die Bis-[N,N′-alkylenbenzidine] , 1955 .