Aspects of Statistical Physics in Computational Complexity

The aim of this review paper is to give a panoramic of the impact of spin glass theory and statistical physics in the study of the K-sat problem. The introduction of spin glass theory in the study of the random K-sat problem has indeed left a mark on the field, leading to some groundbreaking descriptions of the geometry of its solution space, and helping to shed light on why it seems to be so hard to solve. Most of the geometrical intuitions have their roots in the Sherrington-Kirkpatrick model of spin glass. We'll start Chapter 2 by introducing the model from a mathematical perspective, presenting a selection of rigorous results and giving a first intuition about the cavity method. We'll then switch to a physical perspective, to explore concepts like pure states, hierarchical clustering and replica symmetry breaking. Chapter 3 will be devoted to the spin glass formulation of K-sat, while the most important phase transitions of K-sat (clustering, condensation, freezing and SAT/UNSAT) will be extensively discussed in Chapter 4, with respect their complexity, free-entropy density and the Parisi 1RSB parameter. The concept of algorithmic barrier will be presented in Chapter 5 and exemplified in detail on the Belief Propagation (BP) algorithm. The BP algorithm will be introduced and motivated, and numerical analysis of a BP-guided decimation algorithm will be used to show the role of the clustering, condensation and freezing phase transitions in creating an algorithmic barrier for BP. Taking from the failure of BP in the clustered and condensed phases, Chapter 6 will finally introduce the Cavity Method to deal with the shattering of the solution space, and present its application to the development of the Survey Propagation algorithm.

[1]  M. Talagrand,et al.  Spin Glasses: A Challenge for Mathematicians , 2003 .

[2]  Amin Coja-Oghlan A Better Algorithm for Random k-SAT , 2010, SIAM J. Comput..

[3]  M. Mézard,et al.  The Cavity Method at Zero Temperature , 2002, cond-mat/0207121.

[4]  Cesare Tinelli,et al.  Handbook of Satisfiability , 2021, Handbook of Satisfiability.

[5]  Florent Krzakala,et al.  Phase Transitions in the Coloring of Random Graphs , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[7]  Giorgio Parisi,et al.  Infinite Number of Order Parameters for Spin-Glasses , 1979 .

[8]  Guilhem Semerjian,et al.  On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms , 2009, ArXiv.

[9]  Dimitris Achlioptas Solution clustering in random satisfiability , 2008 .

[10]  Federico Ricci-Tersenghi,et al.  On the solution-space geometry of random constraint satisfaction problems , 2006, STOC '06.

[11]  F. Denef TASI lectures on complex structures , 2011, 1104.0254.

[12]  Robert C. Griffiths,et al.  On the distribution of points in a poisson dirichlet process , 1988, Journal of Applied Probability.

[13]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[14]  Andrea Montanari,et al.  Clusters of solutions and replica symmetry breaking in random k-satisfiability , 2008, ArXiv.

[15]  Dimitris Achlioptas,et al.  Random Satisfiability , 2009, Handbook of Satisfiability.

[16]  Dimitris Achlioptas,et al.  THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.

[17]  Andrea Montanari,et al.  Counting good truth assignments of random k-SAT formulae , 2006, SODA '07.

[18]  Amin Coja-Oghlan A Better Algorithm for Random k-SAT , 2009, ICALP.

[19]  Giorgio Parisi,et al.  Order parameter for spin-glasses , 1983 .

[20]  C.H. Papadimitriou,et al.  On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[21]  Tim Austin Mean field models for spin glasses , 2012 .

[22]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[23]  Federico Ricci-Tersenghi,et al.  Random Formulas Have Frozen Variables , 2009, SIAM J. Comput..

[24]  Eli Ben-Sasson,et al.  Linear Upper Bounds for Random Walk on Small Density Random 3-CNFs , 2007, SIAM J. Comput..

[25]  Martin J. Wainwright,et al.  A new look at survey propagation and its generalizations , 2004, SODA '05.

[26]  S. Kak Information, physics, and computation , 1996 .

[27]  Giorgio Parisi,et al.  The Nature of the Spin Glass Phase , 1987 .

[28]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[29]  T Rizzo,et al.  Analysis of the infinity-replica symmetry breaking solution of the Sherrington-Kirkpatrick model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Z. Yang,et al.  Probability models for DNA sequence evolution , 2004, Heredity.

[31]  Yuval Peres,et al.  The threshold for random k-SAT is 2k (ln 2 - O(k)) , 2003, STOC '03.

[32]  R. Monasson,et al.  Statistical Mechanics of the K--Satisfiability Model , 1996, cond-mat/9606215.

[33]  Riccardo Zecchina,et al.  Survey propagation as local equilibrium equations , 2003, ArXiv.

[34]  G. Parisi The order parameter for spin glasses: a function on the interval 0-1 , 1980 .

[35]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[36]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[37]  M. Mézard,et al.  Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.

[38]  Amin Coja-Oghlan,et al.  On belief propagation guided decimation for random k-SAT , 2010, SODA '11.

[39]  Andrea Montanari,et al.  Solving Constraint Satisfaction Problems through Belief Propagation-guided decimation , 2007, ArXiv.

[40]  Florent Krzakala,et al.  Hiding Quiet Solutions in Random Constraint Satisfaction Problems , 2009, Physical review letters.

[41]  M. A. Virasoro,et al.  The microstructure of ultrametricity , 1985 .

[42]  G. Grimmett A THEOREM ABOUT RANDOM FIELDS , 1973 .

[43]  Amin Coja-Oghlan,et al.  Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.