暂无分享,去创建一个
[1] M. Talagrand,et al. Spin Glasses: A Challenge for Mathematicians , 2003 .
[2] Amin Coja-Oghlan. A Better Algorithm for Random k-SAT , 2010, SIAM J. Comput..
[3] M. Mézard,et al. The Cavity Method at Zero Temperature , 2002, cond-mat/0207121.
[4] Cesare Tinelli,et al. Handbook of Satisfiability , 2021, Handbook of Satisfiability.
[5] Florent Krzakala,et al. Phase Transitions in the Coloring of Random Graphs , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[6] M. Mézard,et al. Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[7] Giorgio Parisi,et al. Infinite Number of Order Parameters for Spin-Glasses , 1979 .
[8] Guilhem Semerjian,et al. On the cavity method for decimated random constraint satisfaction problems and the analysis of belief propagation guided decimation algorithms , 2009, ArXiv.
[9] Dimitris Achlioptas. Solution clustering in random satisfiability , 2008 .
[10] Federico Ricci-Tersenghi,et al. On the solution-space geometry of random constraint satisfaction problems , 2006, STOC '06.
[11] F. Denef. TASI lectures on complex structures , 2011, 1104.0254.
[12] Robert C. Griffiths,et al. On the distribution of points in a poisson dirichlet process , 1988, Journal of Applied Probability.
[13] William T. Freeman,et al. Understanding belief propagation and its generalizations , 2003 .
[14] Andrea Montanari,et al. Clusters of solutions and replica symmetry breaking in random k-satisfiability , 2008, ArXiv.
[15] Dimitris Achlioptas,et al. Random Satisfiability , 2009, Handbook of Satisfiability.
[16] Dimitris Achlioptas,et al. THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.
[17] Andrea Montanari,et al. Counting good truth assignments of random k-SAT formulae , 2006, SODA '07.
[18] Amin Coja-Oghlan. A Better Algorithm for Random k-SAT , 2009, ICALP.
[19] Giorgio Parisi,et al. Order parameter for spin-glasses , 1983 .
[20] C.H. Papadimitriou,et al. On selecting a satisfying truth assignment , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.
[21] Tim Austin. Mean field models for spin glasses , 2012 .
[22] S. Kirkpatrick,et al. Solvable Model of a Spin-Glass , 1975 .
[23] Federico Ricci-Tersenghi,et al. Random Formulas Have Frozen Variables , 2009, SIAM J. Comput..
[24] Eli Ben-Sasson,et al. Linear Upper Bounds for Random Walk on Small Density Random 3-CNFs , 2007, SIAM J. Comput..
[25] Martin J. Wainwright,et al. A new look at survey propagation and its generalizations , 2004, SODA '05.
[26] S. Kak. Information, physics, and computation , 1996 .
[27] Giorgio Parisi,et al. The Nature of the Spin Glass Phase , 1987 .
[28] M. Mézard,et al. Spin Glass Theory and Beyond , 1987 .
[29] T Rizzo,et al. Analysis of the infinity-replica symmetry breaking solution of the Sherrington-Kirkpatrick model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[30] Z. Yang,et al. Probability models for DNA sequence evolution , 2004, Heredity.
[31] Yuval Peres,et al. The threshold for random k-SAT is 2k (ln 2 - O(k)) , 2003, STOC '03.
[32] R. Monasson,et al. Statistical Mechanics of the K--Satisfiability Model , 1996, cond-mat/9606215.
[33] Riccardo Zecchina,et al. Survey propagation as local equilibrium equations , 2003, ArXiv.
[34] G. Parisi. The order parameter for spin glasses: a function on the interval 0-1 , 1980 .
[35] Hans-Otto Georgii,et al. Gibbs Measures and Phase Transitions , 1988 .
[36] Brendan J. Frey,et al. Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.
[37] M. Mézard,et al. Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.
[38] Amin Coja-Oghlan,et al. On belief propagation guided decimation for random k-SAT , 2010, SODA '11.
[39] Andrea Montanari,et al. Solving Constraint Satisfaction Problems through Belief Propagation-guided decimation , 2007, ArXiv.
[40] Florent Krzakala,et al. Hiding Quiet Solutions in Random Constraint Satisfaction Problems , 2009, Physical review letters.
[41] M. A. Virasoro,et al. The microstructure of ultrametricity , 1985 .
[42] G. Grimmett. A THEOREM ABOUT RANDOM FIELDS , 1973 .
[43] Amin Coja-Oghlan,et al. Algorithmic Barriers from Phase Transitions , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.