Distributed Control of Coupled Inhomogeneous Diffusion in Tokamak Plasmas

This article proposes novel distributed control methods for the coupled dynamics of the safety factor and electron temperature profiles in tokamaks. The feedback design is based on an infinite-dimensional setting using the Lyapunov analysis for partial differential equations. The coupled dynamics is modeled by two 1-D linearized resistive diffusion equations. We first propose a combined control of both dynamics based on stability analysis. A composite control is then synthesized using a singular perturbation theory where the fast component of the electron temperature is decoupled from the slow component induced by the magnetic field dynamics. Both control methods are evaluated using the RApid Plasma Transport simulatOR simulator and applied to the International Thermonuclear Experimental Reactor tokamak device. The distributed control is performed using antennas operated at electron cyclotron frequency.

[1]  Faa Federico Felici,et al.  Profile control simulations and experiments on TCV: a controller test environment and results using a model-based predictive controller , 2017 .

[2]  O. Sauter,et al.  Neoclassical conductivity and bootstrap current formulas for general axisymmetric equilibria and arbitrary collisionality regime , 1999 .

[3]  Antoine Girard,et al.  Tikhonov theorem for linear hyperbolic systems , 2015, Autom..

[4]  R. J. La Haye,et al.  Plasma models for real-time control of advanced tokamak scenarios , 2011 .

[5]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[6]  Mazen Alamir,et al.  Bootstrap current optimization in Tokamaks using sum-of-squares polynomials , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[7]  W. Marsden I and J , 2012 .

[8]  Alfredo Pironti,et al.  A model-based technique for integrated real-time profile control in the JET tokamak , 2004 .

[9]  Christophe Prieur,et al.  D1-Input-to-state stability of a time-varying nonhomogeneous diffusive equation subject to boundary disturbances , 2012, 2012 American Control Conference (ACC).

[10]  Maarten Steinbuch,et al.  A dynamic state observer for real-time reconstruction of the tokamak plasma profile state and disturbances , 2014, 2014 American Control Conference.

[11]  Emmanuel Witrant,et al.  Estimation of Heat Source Term and Thermal Diffusion in Tokamak Plasmas Using a Kalman Filtering Method in the Early Lumping Approach , 2015, IEEE Transactions on Control Systems Technology.

[12]  J. I. Ramos,et al.  Numerical simulation and optimal control in plasma physics with applications to Tokamaks , 1990 .

[13]  S. H. Kim,et al.  A potentially robust plasma profile control approach for ITER using real-time estimation of linearized profile response models , 2012 .

[14]  Faa Federico Felici,et al.  Parameter estimation for a nonlinear control-oriented tokamak profile evolution model , 2015 .

[15]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[16]  E. Joffrin,et al.  A control-oriented model of the current profile in tokamak plasma , 2007 .

[17]  Bojan Mavkov,et al.  Control of coupled transport in Tokamak plasmas , 2017 .

[18]  Christophe Prieur,et al.  A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients , 2013, IEEE Transactions on Automatic Control.

[19]  F. Hinton,et al.  Theory of plasma transport in toroidal confinement systems , 1976 .

[20]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[21]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[22]  A. Pironti,et al.  Fusion, tokamaks, and plasma control: an introduction and tutorial , 2005, IEEE Control Systems.

[23]  Tunc Geveci,et al.  Advanced Calculus , 2014, Nature.

[24]  Zoran Gajic,et al.  Optimal Control Of Singularly Perturbed Linear Systems And Applications , 2001 .

[25]  Timothy Goodman,et al.  Simple predictive electron transport models applied to sawtoothing plasmas , 2016 .

[26]  T. Aniel,et al.  Validation of a new mixed Bohm/gyro-Bohm model for electron and ion heat transport against the ITER, Tore Supra and START database discharges , 1998 .

[27]  Miroslav Krstic,et al.  Control of Turbulent and Magnetohydrodynamic Channel Flows: Boundary Stabilization and State Estimation , 2007 .

[28]  F. Felici,et al.  Non-linear model-based optimization of actuator trajectories for tokamak plasma profile control , 2012 .

[29]  Laurent Lefèvre,et al.  Plasma q-profile control in tokamaks using a damping assignment passivity-based approach , 2016 .

[30]  Jet Efda Contributors,et al.  A two-time-scale dynamic-model approach for magnetic and kinetic profile control in advanced tokamak scenarios on JET , 2008 .

[31]  Eugenio Schuster,et al.  Backstepping Control of the Toroidal Plasma Current Profile in the DIII-D Tokamak , 2014, IEEE Transactions on Control Systems Technology.

[32]  Experts,et al.  Integrated magnetic and kinetic control of advanced tokamak plasmas on DIII-D based on data-driven models , 2013 .

[33]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[34]  Eugenio Schuster,et al.  First-principles-driven model-based current profile control for the DIII-D tokamak via LQI optimal control , 2013 .

[35]  Christophe Prieur,et al.  Safety Factor Profile Control in a Tokamak , 2013, Springer Briefs in Electrical and Computer Engineering.

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  Christophe Prieur,et al.  Lyapunov-based distributed control of the safety-factor profile in a tokamak plasma , 2013 .

[38]  Olivier Sauter,et al.  Simultaneous closed-loop control of the current profile and the electron temperature profile in the TCV tokamak , 2015, 2015 American Control Conference (ACC).

[39]  小倩,et al.  Fusion Rings for Degenerate Minimal Models , 2002 .

[40]  F. Felici,et al.  Real-time physics-model-based simulation of the current density profile in tokamak plasmas , 2011 .

[41]  Gerd Vandersteen,et al.  Estimation of the thermal diffusion coefficient in fusion plasmas taking frequency measurement uncertainties into account , 2014 .

[42]  P. Olver Nonlinear Systems , 2013 .

[43]  Yury Orlov,et al.  H∞H∞ stabilization of the current profile in tokamak plasmas via an LMI approach , 2013, Autom..

[44]  Christophe Prieur,et al.  Multi-experiment state-space identification of coupled magnetic and kinetic parameters in tokamak plasmas , 2017 .

[45]  M. Steinbuch,et al.  Control of the tokamak safety factor profile with time-varying constraints using MPC , 2015 .