Energy levels of two‐dimensional anharmonic oscillators with sextic and octic perturbations

Two renormalized versions of inner product and hypervirial techniques are presented together with the Hill determinant approach for performing accurate calculations of the energy levels of two‐dimensional oscillators characterized by the potentials VN=6(x, y)=(x2+y2) +λ(axxx6+ayyy6+3axyx4 y2+3ayxx2y4) and VN=8(x,y)= (x2+y2)+λ(axxx8+ayyy8+6b xyx4y4 +4axyx6y2+4ayxx2y6). The methods have been used effectively to calculate the energy eigenvalues for many eigenstates over a wide range values of perturbation parameter λ and various values of coefficients aIJ. The results produced by various techniques are compared with each other.

[1]  M. Witwit Finite difference calculations of eigenvalues for various potentials , 1992 .

[2]  J. Čížek,et al.  Upper and lower bounds of the ground state energy of anharmonic oscillators using renormalized inner projection , 1991 .

[3]  E. Buend́ıa,et al.  Perturbative-variational calculations in two coupled harmonic oscillators , 1991 .

[4]  M. Witwit The eigenvalues of the Schrodinger equation for spherically symmetric states for various types of potentials in two, three and N dimensions, by using perturbative and non-perturbative methods , 1991 .

[5]  J. Killingbeck,et al.  The perturbed two-dimensional oscillator , 1986 .

[6]  E. Castro,et al.  Convergent perturbation series for coupled oscillators , 1985 .

[7]  M. Demiralp,et al.  Energy levels of a two‐dimensional anharmonic oscillator: Characteristic function approach , 1985 .

[8]  G. Arteca,et al.  Eigenvalues of anharmonic oscillators from a variational functional method , 1984 .

[9]  Thomas A. DeGrand,et al.  Moment Method for Eigenvalues and Expectation Values , 1980 .

[10]  K. Banerjee,et al.  General anharmonic oscillators , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[11]  Don MacMillen,et al.  Quantum Theory of Anharmonic Oscillators: Energy Levels of a Single and a Pair of Coupled Oscillators with Quartic Coupling , 1978 .

[12]  E. Montroll,et al.  Quantum theory of anharmonic oscillators. II. Energy levels of oscillators with x2alpha anharmonicity , 1976 .

[13]  P. K. Srivastava,et al.  Eigenvalues of ?x2m anharmonic oscillators , 1973 .