Automaticity IV: sequences, sets, and diversity

This paper studies the descriptional complexity of (i) sequences over a finite alphabet; and (ii) subsets of N (the natural numbers). If (s (i )) i ~0 is a sequence over a finite alphab et 0394, then we define the k-automaticity of s, Aks(n), to be the smallest possible number of states in any deterministic finite automaton that, for all i with 0 ~ i ~ n, takes i expressed in base k as input and computes s(i). We give examples of sequences that have high automaticity in all bases k; for example, we show that the characteristic sequence of the primes has k-automaticity Aks(n) = 03A9(n1/43) for all k ~ 2, thus making quantitative the classical theorem of Minsky and Papert that the set of primes expressed in base 2 is not regular. Research supported in part by a grant from NSERC. Manuscrit regu le 5 avril 1996.

[1]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[2]  N. B. Slater,et al.  Gaps and steps for the sequence nθ mod 1 , 1967, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  D. R. Heath-Brown Zero-free regions for Dirichlet $L$-functions, and the least prime in an arithmetic progression , 1992 .

[4]  J. Barkley Rosser,et al.  Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x). II , 1975 .

[5]  S. Wagstaff Greatest of the least primes in arithmetic progressions having a given modulus , 1979 .

[6]  J. Cassels,et al.  An Introduction to Diophantine Approximation , 1957 .

[7]  Lowell Schoenfeld,et al.  Sharper bounds for the Chebyshev functions () and (). II , 1976 .

[8]  Cynthia Dwork,et al.  On the power of 2-way probabilistic finite state automata , 1989, 30th Annual Symposium on Foundations of Computer Science.

[9]  M. W. Shields An Introduction to Automata Theory , 1988 .

[10]  Dennis Allen,et al.  On a Characterization of the Nonregular Set of Primes , 1968, J. Comput. Syst. Sci..

[11]  S. Swierczkowski On successive settings of an arc on the circumference of a circle , 1958 .

[12]  Jeffrey Shallit,et al.  Automaticity: Properties of a Measure of Descriptional Complexity , 1994, STACS.

[13]  Rusins Freivalds,et al.  Running Time to Recognize Nonregular Languages by 2-Way Probabilistic Automata , 1991, ICALP.

[14]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[15]  Jeffrey Shallit,et al.  Automaticity III: Polynomial automaticity and context-free languages , 1998, computational complexity.

[16]  Jeffrey Shallit,et al.  Automaticity II: Descriptional Complexity in the Unary Case , 1997, Theor. Comput. Sci..

[17]  Cynthia Dwork,et al.  A Time Complexity Gap for Two-Way Probabilistic Finite-State Automata , 1990, SIAM J. Comput..

[18]  D.R. Heath-Brown The least square-free number in an arithmetic progression. , 1982 .

[19]  Rusins Freivalds,et al.  Minimal Nontrivial Space Complexity of Probabilistic One-Way Turing Machines , 1990, MFCS.

[20]  Jean-Paul Allouche,et al.  A relative of the Thue-Morse sequence , 1995, Discret. Math..

[21]  P. Shiue,et al.  Substitution invariant cutting sequences , 1993 .

[22]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[23]  Marvin Minsky,et al.  Unrecognizable Sets of Numbers , 1966, J. ACM.

[24]  Juris Hartmanis,et al.  On the Recognition of Primes by Automata , 1968, JACM.

[25]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[26]  J. Shallit Some Facts About Continued Fractions That Should Be Better Known , 1991 .