New applications of simulated annealing in X-ray crystallography and solution NMR.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  D. Blow,et al.  The detection of sub‐units within the crystallographic asymmetric unit , 1962 .

[3]  Martin Karplus,et al.  Vicinal Proton Coupling in Nuclear Magnetic Resonance , 1963 .

[4]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[5]  R. Diamond A real-space refinement procedure for proteins , 1971 .

[6]  J. Curro Computer simulation of multiple chain systems—the effect of density on the average chain dimensions , 1974 .

[7]  George M. Church,et al.  A structure-factor least-squares refinement procedure for macromolecular structures using constrained and restrained parameters , 1977 .

[8]  J. W. Humberston Classical mechanics , 1980, Nature.

[9]  Olga Kennard,et al.  Systematic analysis of structural data as a research technique in organic chemistry , 1983 .

[10]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[11]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[12]  W. Hendrickson Stereochemically restrained refinement of macromolecular structures. , 1985, Methods in enzymology.

[13]  M. Rossmann,et al.  The Refinement of Southern Bean Mosaic Virus in Reciprocal Space , 1984 .

[14]  N Go,et al.  Calculation of protein conformations by proton-proton distance constraints. A new efficient algorithm. , 1985, Journal of molecular biology.

[15]  W F van Gunsteren,et al.  A protein structure from nuclear magnetic resonance data. lac repressor headpiece. , 1985, Journal of molecular biology.

[16]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[17]  M Karplus,et al.  The three‐dimensional structure of α1‐purothionin in solution: combined use of nuclear magnetic resonance, distance geometry and restrained molecular dynamics , 1986, The EMBO journal.

[18]  M Karplus,et al.  Effect of anisotropy and anharmonicity on protein crystallographic refinement. An evaluation by molecular dynamics. , 1986, Journal of molecular biology.

[19]  M Karplus,et al.  Three-dimensional structure of proteins determined by molecular dynamics with interproton distance restraints: application to crambin. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R. Huber,et al.  Crystal structure determination, refinement and the molecular model of the alpha-amylase inhibitor Hoe-467A. , 1986, Journal of molecular biology.

[21]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[22]  H. Scheraga,et al.  Monte Carlo-minimization approach to the multiple-minima problem in protein folding. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[23]  W. Braun,et al.  Distance geometry and related methods for protein structure determination from NMR data , 1987, Quarterly Reviews of Biophysics.

[24]  M. Karplus,et al.  Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.

[25]  M. Saunders Stochastic exploration of molecular mechanics energy surfaces. Hunting for the global minimum , 1987 .

[26]  E. Haug,et al.  A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems , 1987 .

[27]  E. Haug,et al.  A recursive formulation constrained mechanical system dynamics. I: Open loop systems , 1987 .

[28]  A. Gronenborn,et al.  Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. , 1988, Protein engineering.

[29]  A. Brünger Crystallographic refinement by simulated annealing. Application to a 2.8 A resolution structure of aspartate aminotransferase. , 1988, Journal of molecular biology.

[30]  A. Gronenborn,et al.  Refinement of the solution structure of the DNA dodecamer 5'd(CGCGPATTCGCG)2 containing a stable purine-thymine base pair: combined use of nuclear magnetic resonance and restrained molecular dynamics. , 1988, Biochemistry.

[31]  A. Gronenborn,et al.  Determination of three‐dimensional structures of proteins from interproton distance data by dynamical simulated annealing from a random array of atoms Circumventing problems associated with folding , 1988, FEBS letters.

[32]  A. Brunger Crystallographic refinement by simulated annealing , 1988 .

[33]  A. Gronenborn,et al.  Determination of three‐dimensional structures of proteins from interproton distance data by hybrid distance geometry‐dynamical simulated annealing calculations , 1988, FEBS letters.

[34]  Edward J. Haug,et al.  A Recursive Formulation for Constrained Mechanical System Dynamics: Part III. Parallel Processor Implementation , 1988 .

[35]  M G Rossmann,et al.  The use of molecular-replacement phases for the refinement of the human rhinovirus 14 structure. , 1988, Acta crystallographica. Section A, Foundations of crystallography.

[36]  M. Karplus,et al.  Crystallographic refinement by simulated annealing: application to crambin , 1989 .

[37]  Wilfred F. van Gunsteren,et al.  Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications , 1989 .

[38]  W. V. Gunsteren,et al.  Testing the method of crystallographic refinement using molecular dynamics , 1989 .

[39]  R. Read Structure-factor probabilities for related structures , 1990 .

[40]  A T Brünger,et al.  Slow-cooling protocols for crystallographic refinement by simulated annealing. , 1990, Acta crystallographica. Section A, Foundations of crystallography.

[41]  William H. Press,et al.  Numerical recipes , 1990 .

[42]  J. Skehel,et al.  Refinement of the influenza virus hemagglutinin by simulated annealing. , 1991, Journal of molecular biology.

[43]  P Gros,et al.  Inclusion of thermal motion in crystallographic structures by restrained molecular dynamics. , 1990, Science.

[44]  M. Karplus,et al.  Molecular dynamics simulations in biology , 1990, Nature.

[45]  J. Prestegard,et al.  Refinement of the NMR structures for acyl carrier protein with scalar coupling data , 1990, Proteins.

[46]  S H Kim,et al.  Atomic charges for DNA constituents derived from single-crystal X-ray diffraction data. , 1990, Journal of molecular biology.

[47]  M. Nilges,et al.  Sampling Properties of Simulated Annealing and Distance Geometry , 1991 .

[48]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[49]  W. Hendrickson Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. , 1991, Science.

[50]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[51]  John Kuriyan,et al.  Exploration of disorder in protein structures by X‐ray restrained molecular dynamics , 1991, Proteins.

[52]  Jeffrey C. Hoch,et al.  Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy , 1991, NATO ASI Series.

[53]  G. Bricogne A multisolution method of phase determination by combined maximization of entropy and likelihood. III. Extension to powder diffraction data , 1991 .

[54]  A. Brunger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. , 1992 .

[55]  P Argos,et al.  Optimal protocol and trajectory visualization for conformational searches of peptides and proteins. , 1992, Journal of molecular biology.

[56]  A. Brünger Free R value: a novel statistical quantity for assessing the accuracy of crystal structures , 1992, Nature.

[57]  A. Gronenborn,et al.  Assessing the quality of solution nuclear magnetic resonance structures by complete cross-validation. , 1993, Science.

[58]  T. L. James,et al.  Metropolis Monte Carlo calculations of DNA structure using internal coordinates and NMR distance restraints: An alternative method for generating a high-resolution solution structure , 1993, Journal of biomolecular NMR.

[59]  G Bricogne,et al.  Direct phase determination by entropy maximization and likelihood ranking: status report and perspectives. , 1993, Acta crystallographica. Section D, Biological crystallography.

[60]  Abhinandan Jain,et al.  A fast recursive algorithm for molecular dynamics simulation , 1993 .

[61]  Axel T. Brunger,et al.  Thermal Motion and Conformational Disorder in Protein Crystal Structures: Comparison of Multi‐Conformer and Time‐Averaging Models , 1994 .

[62]  Abhinandan Jain,et al.  Protein simulations using techniques suitable for very large systems: The cell multipole method for nonbond interactions and the Newton‐Euler inverse mass operator method for internal coordinate dynamics , 1994, Proteins.

[63]  G W Vuister,et al.  The impact of direct refinement against three-bond HN-C alpha H coupling constants on protein structure determination by NMR. , 1994, Journal of magnetic resonance. Series B.

[64]  D F Mierke,et al.  Coupling constants again: Experimental restraints in structure refinement , 1994, J. Comput. Aided Mol. Des..

[65]  A. Brünger,et al.  Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.

[66]  A M Gronenborn,et al.  The impact of direct refinement against 13C alpha and 13C beta chemical shifts on protein structure determination by NMR. , 1995, Journal of magnetic resonance. Series B.

[67]  Angela M. Gronenborn,et al.  The Impact of Direct Refinement against 13Cα and 13Cβ Chemical Shifts on Protein Structure Determination by NMR , 1995 .

[68]  Z. Dauter,et al.  Proteins at atomic resolution. , 1995, Current opinion in structural biology.

[69]  Structure determination from NOESY intensities using a metropolis simulated-annealing (MSA) refinement of dihedral angles. , 1995, Journal of magnetic resonance. Series B.

[70]  M Nilges,et al.  Calculation of protein structures with ambiguous distance restraints. Automated assignment of ambiguous NOE crosspeaks and disulphide connectivities. , 1995, Journal of molecular biology.

[71]  A. Brünger,et al.  Conformational variability of solution nuclear magnetic resonance structures. , 1995, Journal of molecular biology.

[72]  Full-matrix refinement of the protein crambin at 0.83 A and 130 K. , 1995, Acta crystallographica. Section D, Biological crystallography.

[73]  Eric Oldfield,et al.  Chemical shifts and three-dimensional protein structures , 1995, Journal of biomolecular NMR.

[74]  A M Gronenborn,et al.  The impact of direct refinement against proton chemical shifts on protein structure determination by NMR. , 1995, Journal of magnetic resonance. Series B.

[75]  M Nilges,et al.  Structure calculation from NMR data. , 1996, Current opinion in structural biology.

[76]  G. Kleywegt,et al.  Checking your imagination: applications of the free R value. , 1996, Structure.

[77]  A. Gronenborn,et al.  Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases , 1996, Protein science : a publication of the Protein Society.

[78]  A T Brünger,et al.  Do NOE distances contain enough information to assess the relative populations of multi-conformer structures? , 1996, Journal of biomolecular NMR.

[79]  V S Lamzin,et al.  Ribonuclease from Streptomyces aureofaciens at atomic resolution. , 1996, Acta crystallographica. Section D, Biological crystallography.

[80]  R. Read,et al.  Improved Structure Refinement Through Maximum Likelihood , 1996 .

[81]  A T Brünger,et al.  Direct Observation of Protein Solvation and Discrete Disorder with Experimental Crystallographic Phases , 1996, Science.

[82]  H. Berman,et al.  New parameters for the refinement of nucleic acid-containing structures. , 1996, Acta crystallographica. Section D, Biological crystallography.

[83]  T. Steitz,et al.  Crystal structure of the two RNA binding domains of human hnRNP A1 at 1.75 Å resolution , 1997, Nature Structural Biology.

[84]  A T Brünger,et al.  Torsion-angle molecular dynamics as a new efficient tool for NMR structure calculation. , 1997, Journal of magnetic resonance.

[85]  R. Read,et al.  Cross-validated maximum likelihood enhances crystallographic simulated annealing refinement. , 1997, Proceedings of the National Academy of Sciences of the United States of America.