Ginzburg-Landau model with small pinning domains

We consider a Ginzburg-Landau type energy with a piecewise constant pinning term $a$ in the potential $(a^2 - |u|^2)^2$. The function $a$ is different from 1 only on finitely many disjoint domains, called the pinning domains. These pinning domains model small impurities in a homogeneous superconductor and shrink to single points in the limit $\epsilon\to0$; here, $\epsilon$ is the inverse of the Ginzburg-Landau parameter. We study the energy minimization in a smooth simply connected domain $\Omega \subset \mathbb{C}$ with Dirichlet boundary condition $g$ on $\partial \Omega$, with topological degree ${\rm deg}_{\partial \Omega} (g) = d >0$. Our main result is that, for small $\epsilon$, minimizers have $d$ distinct zeros (vortices) which are inside the pinning domains and they have a degree equal to $1$. The question of finding the locations of the pinning domains with vortices is reduced to a discrete minimization problem for a finite-dimensional functional of renormalized energy. We also find the position of the vortices inside the pinning domains and show that, asymptotically, this position is determined by local renormalized energy which does not depend on the external boundary conditions.

[1]  Patricio Felmer,et al.  On the basic concentration estimate for the Ginzburg-Landau equation , 1998 .

[2]  Équation de Ginzburg-Landau et singularités , 2004 .

[3]  Paul K. Newton,et al.  Vortex Lattice Theory: A Particle Interaction Perspective , 2009, SIAM Rev..

[4]  Itai Shafrir,et al.  Asymptotic Behavior of Minimizers for the Ginzburg-Landau Functional with Weight. Part II , 1998 .

[5]  Vicentiu D. Rădulescu,et al.  Minimization problems and corresponding renormalized energies , 1996, Differential and Integral Equations.

[6]  Itai Shafrir,et al.  Asymptotic Behavior of Minimizers for the Ginzburg-Landau Functional with Weight. Part I , 1998 .

[7]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[8]  D. Larbalestier,et al.  High-Tc superconducting materials for electric power applications , 2001, Nature.

[9]  Sylvia Serfaty,et al.  Vortices in the Magnetic Ginzburg-Landau Model , 2006 .

[10]  N. Meyers An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations , 1963 .

[11]  Ayman Kachmar Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II , 2007, 0711.4248.

[12]  L. Bronsard,et al.  Pinning effects and their breakdown for a Ginzburg–Landau model with normal inclusions , 2005 .

[13]  H. Brezis New Questions Related to the Topological Degree , 2006 .

[14]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[15]  L. Berlyand,et al.  Ginzburg-Landau minimizers in perforated domains with prescribed degrees , 2008 .

[16]  Petru Mironescu,et al.  THE GINZBURG–LANDAU FUNCTIONAL WITH A DISCONTINUOUS AND RAPIDLY OSCILLATING PINNING TERM. PART I: THE ZERO DEGREE CASE , 2011 .

[17]  I. Sigal,et al.  Pinning of magnetic vortices by an external potential , 2005 .

[18]  Petru Mironescu,et al.  Ginzburg-landau type energy with discontinuous constraint , 1999 .

[19]  H. Aydi,et al.  Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint , 2010 .

[20]  Patricia Bauman,et al.  On the zeros of solutions to Ginzburg-Landau type systems , 1993 .

[21]  P. Bauman,et al.  VORTEX PINNING WITH BOUNDED FIELDS FOR THE GINZBURG-LANDAU EQUATION , 2003 .

[22]  John Bardeen,et al.  Theory of the Motion of Vortices in Superconductors , 1965 .

[23]  Amandine Aftalion,et al.  Pinning phenomena in the Ginzburg-Landau model of superconductivity , 2000 .

[24]  B. Glowacki,et al.  Superconducting–magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  Leonid Berlyand,et al.  Two-parameter homogenization for a Ginzburg-Landau problem in a perforated domain , 2008, Networks Heterog. Media.

[26]  Frédéric Hélein,et al.  Asymptotics for the minimization of a Ginzburg-Landau functional , 1993 .

[27]  Qiang Du,et al.  Ginzburg-Landau vortices: dynamics, pinning, and hysteresis , 1997 .

[28]  J. Rubinstein On the equilibrium position of Ginzburg Landau vortices , 1995 .