The Dusty and Extremely Red Progenitor of the Type II Supernova 2023ixf in Messier 101

Stars with initial masses in the range of 8-25 solar masses are thought to end their lives as hydrogen-rich supernova (SNe II). Based on the pre-explosion images of Hubble Space Telescope (\textit{HST}) and \textit{Spitzer} Space Telescope, we place tight constraints on the progenitor candidate of type IIP SN 2023ixf in Messier 101. Fitting of the spectral energy distribution (SED) of its progenitor with dusty stellar spectral models results in an estimation of the effective temperature as 3090 K, making it the coolest SN progenitor ever discovered. The luminosity is estimated as log($L/$L$_{\odot}$)$\sim4.8$, consistent with a red supergiant (RSG) star with an initial mass of 12$^{+2}_{-1}$ M$_{\odot}$. The derived mass loss rate (6-9$\times10^{-6}$ M$_{\odot}$ yr$^{-1}$) is much lower than that inferred from the flash spectroscopy of the SN, suggesting that the progenitor experienced a sudden increase in mass loss when approaching the final explosion. In the mid-infrared color diagram, the progenitor star is found to show a significant deviation from the range of regular RSGs, but is close to some extreme RSGs and super asymptotic giant branch (sAGB) stars. Thus, SN 2023ixf may belong to a rare subclass of electron-captured supernova for an origin of sAGB progenitor.

[1]  T. Matheson,et al.  The SN 2023ixf Progenitor in M101: I. Infrared Variability , 2023, 2306.10783.

[2]  V. Bhalerao,et al.  Far-ultraviolet to Near-infrared Observations of SN 2023ixf: A High-energy Explosion Engulfed in Complex Circumstellar Material , 2023, The Astrophysical Journal Letters.

[3]  S. Jha,et al.  A Luminous Red Supergiant and Dusty Long-period Variable Progenitor for SN 2023ixf , 2023, The Astrophysical Journal Letters.

[4]  G. Hosseinzadeh,et al.  High resolution spectroscopy of SN~2023ixf's first week: Engulfing the Asymmetric Circumstellar Material , 2023, 2306.07964.

[5]  David O. Jones,et al.  SN 2023ixf in Messier 101: A Variable Red Supergiant as the Progenitor Candidate to a Type II Supernova , 2023, The Astrophysical Journal Letters.

[6]  G. Hosseinzadeh,et al.  Identifying the SN 2022acko progenitor with JWST , 2023, Monthly Notices of the Royal Astronomical Society.

[7]  Tianmeng Zhang,et al.  SN 2018hna: Adding a Piece to the Puzzles of the Explosion of Blue Supergiants , 2023, 2301.09953.

[8]  C. Kochanek,et al.  The late time optical evolution of twelve core-collapse supernovae: Detection of normal stellar winds , 2022, Monthly notices of the Royal Astronomical Society.

[9]  David O. Jones,et al.  A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team , 2021, The Astrophysical Journal Letters.

[10]  B. Jiang,et al.  Red Supergiants in M31 and M33. II. The Mass-loss Rate , 2021, 2103.05263.

[11]  Z. T. Spetsieri,et al.  Evolved massive stars at low-metallicity , 2021, Astronomy & Astrophysics.

[12]  Tokyo,et al.  Red Supergiants in M31 and M33 I. The Complete Sample. , 2020, 2011.12051.

[13]  A. Mahabal,et al.  A Large Fraction of Hydrogen-rich Supernova Progenitors Experience Elevated Mass Loss Shortly Prior to Explosion , 2020, The Astrophysical Journal.

[14]  Davida M. Schiff Dropped. , 2020, Academic pediatrics.

[15]  K. Suh Infrared Properties of Asymptotic Giant Branch Stars in Our Galaxy and the Magellanic Clouds , 2019, The Astrophysical Journal.

[16]  A. Ray,et al.  Type IIP Supernova Progenitors. II. Stellar Mass and Obscuration by the Dust in the Circumstellar Medium , 2019, The Astrophysical Journal.

[17]  J. Maund,et al.  The Type II-plateau Supernova 2017eaw in NGC 6946 and Its Red Supergiant Progenitor , 2019, The Astrophysical Journal.

[18]  B. Jiang,et al.  The Period–Luminosity Relations of Red Supergiants in M33 and M31 , 2019, The Astrophysical Journal Supplement Series.

[19]  J. Maund,et al.  Probing the final-stage progenitor evolution for Type IIP Supernova 2017eaw in NGC 6946 , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  R. Foley,et al.  The dusty progenitor star of the Type II supernova 2017eaw , 2018, Monthly Notices of the Royal Astronomical Society.

[21]  J. Fuller,et al.  Pre-supernova outbursts via wave heating in massive stars – II. Hydrogen-poor stars , 2017, 1710.04251.

[22]  A. Jorissen,et al.  A grid of MARCS model atmospheres for late-type stars.: II. S stars and their properties , 2017 .

[23]  J. Fuller Pre-supernova outbursts via wave heating in massive stars – I. Red supergiants , 2017, 1704.08696.

[24]  Joel D. Hartman,et al.  Vartools: A program for analyzing astronomical time-series data , 2016, Astron. Comput..

[25]  J. Moustakas,et al.  CHAOS. III. GAS-PHASE ABUNDANCES IN NGC 5457 , 2016, 1605.01612.

[26]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[27]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[28]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[29]  S. Smartt Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars , 2015, Publications of the Astronomical Society of Australia.

[30]  G. Fazio,et al.  A Spitzer/IRAC characterization of Galactic AGB and RSG stars , 2015, 1501.02749.

[31]  J. Lattanzio,et al.  Super and massive AGB stars - IV. Final fates - Initial to final mass relation , 2014, 1410.5431.

[32]  M. Groenewegen,et al.  Luminosities and mass-loss rates of Local Group AGB stars and Red Supergiants , 2014, 1711.07803.

[33]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[34]  Center for Cosmology,et al.  ON ABSORPTION BY CIRCUMSTELLAR DUST, WITH THE PROGENITOR OF SN 2012aw AS A CASE STUDY , 2012, 1208.4111.

[35]  M. Drout,et al.  THE YELLOW AND RED SUPERGIANTS OF M33 , 2012, 1203.0247.

[36]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[37]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[38]  K. Cook,et al.  INFRARED PERIOD–LUMINOSITY RELATIONS OF EVOLVED VARIABLE STARS IN THE LARGE MAGELLANIC CLOUD , 2010, 1007.5029.

[39]  Linda J. Smith,et al.  SPITZER SAGE INFRARED PHOTOMETRY OF MASSIVE STARS IN THE LARGE MAGELLANIC CLOUD , 2009, 0905.1328.

[40]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2008, 0809.0403.

[41]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[42]  N. Langer,et al.  The Supernova Channel of Super-AGB Stars , 2007, 0705.4643.

[43]  Robert M. Quimby,et al.  SN 2006bp: Probing the Shock Breakout of a Type II-P Supernova , 2007, 0705.3478.

[44]  F. Kitaura,et al.  Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae , 2005, astro-ph/0512065.

[45]  H. J. Habing,et al.  AGB stars in the Magellanic Clouds II. The rate of star formation across the LMC , 2005, astro-ph/0509881.

[46]  Chris L. Fryer,et al.  How Massive Single Stars End Their Life , 2002, astro-ph/0212469.

[47]  Ž. Ivezić,et al.  Erratum: Self-similarity and scaling behaviour of infrared emission from radiatively heated dust — I. Theory , 1997 .

[48]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[49]  S. E. Woosley,et al.  The conductive propagation of nuclear flames. I. Degenerate C+O and O+ Ne + Mg white dwarfs , 1992 .

[50]  N. Langer,et al.  Evolution of massive stars in the Large Magellanic Cloud : models with semiconvection. , 1991 .

[51]  F. Timmes,et al.  The Conductive Propagation of Nuclear Flames , 1991 .

[52]  P. Podsiadlowski,et al.  An alternative binary model for SN1987A , 1989, Nature.

[53]  K. Nomoto,et al.  Why did the progenitor of SN 1987A undergo the blue-red-blue evolution? , 1988 .

[54]  K. Nomoto Evolution of 8--10 M sun Stars toward Electron Capture Supernovae. II. Collapse of an O + NE + MG Core , 1987 .

[55]  W. Arnett Supernova theory and supernova 1987A , 1987 .

[56]  J. Truran,et al.  Explosion of a blue supergiant: a model for supernova SN1987A , 1987, Nature.

[57]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[58]  K. Nomoto Evolution of 8-10 solar mass stars toward electron capture supernovae. I - Formation of electron-degenerate O + NE + MG cores. , 1984 .

[59]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[60]  Seung Soo Hong,et al.  On the Size Distribution of Interstellar Grains , 1978 .

[61]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .

[62]  A. Abian,et al.  X-ray, Optical, and Radio Observations of the Type Ii Supernovae 1999em and 1998s , 2008 .

[63]  Christopher W. Stubbs,et al.  MACHO observations of LMC red giants: Mira and semi-regular pulsators, and contact and semi-detached binaries , 1999 .

[64]  S. Woosley,et al.  Supernova 1987A: six weeks later , 1988 .

[65]  G. Sonneborn The Progenitor of SN 1987A , 1988 .