Effect of buffer layer and film thickness on the growth mechanism of La0.67Ca0.33MnO3 films

[1]  N. Pryds,et al.  Tuning the Two-Dimensional Electron Liquid at Oxide Interfaces by Buffer-Layer-Engineered Redox Reactions. , 2017, Nano letters.

[2]  Jie Zhang,et al.  Enhanced transport properties in InAlGaN/AlN/GaN heterostructures on Si (111) substrates: The role of interface quality , 2017 .

[3]  J. Sulpizio,et al.  Extreme mobility enhancement of two-dimensional electron gases at oxide interfaces by charge-transfer-induced modulation doping. , 2015, Nature materials.

[4]  D. Su,et al.  Interfacial reconstruction and superconductivity in cuprate–manganite multilayers of YBa2Cu3O7−δ and Pr0.68Ca0.32MnO3 , 2012 .

[5]  H. Xiao,et al.  Effect of AlN buffer thickness on GaN epilayer grown on Si(1 1 1) , 2011 .

[6]  Xianhua Wei,et al.  Anisotropic lattice strain relaxation of MgO/SrTiO3(001) in a textured island growth mode , 2011 .

[7]  Yiqian Wang,et al.  Microstructure evolution of Bi0.4Ca0.6MnO3 epitaxial films with different thickness , 2011 .

[8]  T. Zhao,et al.  Crossover of angular dependent magnetoresistance with the metal-insulator transition in colossal magnetoresistive manganite films , 2009 .

[9]  Jirong Sun,et al.  Control of the charge-ordering-insulating phase in epitaxial La1−xCaxMnO3 (x=0.30–0.45) thin films under the anisotropic strain , 2009 .

[10]  Sang-Koog Kim,et al.  Layer-by-layer growth and growth-mode transition of SrRuO3 thin films on atomically flat single-terminated SrTiO3 (111) surfaces , 2008, 0812.3196.

[11]  Jirong Sun,et al.  Interfacial potential in La1−xCaxMnO3∕SrTiO3:Nb junctions with different Ca contents , 2008 .

[12]  Chong-yu Wang,et al.  Energetics of the growth mode transition in InAs/GaAs(001) small quantum dot formation: A first-principles study , 2006 .

[13]  Hong Wang,et al.  Role of columnar grain size in magnetization of La0.8MnO3 thin films grown by pulsed laser deposition , 2005 .

[14]  Z. Ivanov,et al.  Colossal magnetoresistance effect in epitaxially grown La2/3Ca1/3MnO3 perovskite-like manganite thin films , 2005 .

[15]  Y. Saito Three-dimensional elastic lattice model of heteroepitaxy , 2005 .

[16]  Dabing Li,et al.  Influence of the growth temperature of the high-temperature AlN buffer on the properties of GaN grown on Si(111) substrate , 2004 .

[17]  Zhong Lin Wang,et al.  Microstructure of epitaxial La0.7Ca0.3MnO3 thin films grown on LaAlO3 and SrTiO3 , 2000 .

[18]  M. Ziese,et al.  Anisotropic magnetoresistance of thin La0.7Ca0.3MnO3 films , 1998 .

[19]  R. Fleming,et al.  Very large magnetoresistance in perovskite‐like La‐Ca‐Mn‐O thin films , 1994 .

[20]  T. Tiefel,et al.  Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films , 1994, Science.

[21]  J. V. Spiegel,et al.  Modification of the microstructure in epitaxial erbium silicide , 1993 .

[22]  M. Volmer,et al.  Nucleation in super-saturated products , 1988 .

[23]  J. W. Matthews,et al.  Defects in epitaxial multilayers: II. Dislocation pile-ups, threading dislocations, slip lines and cracks , 1975 .

[24]  F. C. Frank,et al.  One-dimensional dislocations. I. Static theory , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.