Computer simulations of vapor-liquid phase equilibria of n-alkanes

For petrochemical applications knowledge of the critical properties of the n‐alkanes is of interest even at temperatures where these molecules are thermally unstable. Computer simulations can determine the vapor–liquid coexistence curve of a large number of n‐alkanes ranging from pentane (C5) through octatetracontane (C48). We have compared the predicted phase diagrams of various models with experimental data. Models which give nearly identical properties of liquid alkanes at standard conditions may have critical temperatures that differ by more than 100 K. A new n‐alkane model has been developed by us that gives a good description of the phase behavior over a large temperature range. For modeling vapor–liquid coexistence a relatively simple united atom model was sufficient to obtain a very good agreement with experimental data; thus it appears not necessary to take the hydrogen atoms explicitly into account. The model developed in this work has been used to determine the critical properties of the long‐chain alkanes for which experiments turned out to be difficult and contradictory. We found that for the long‐chain alkanes (C8–C48) the critical density decreases as a function of the carbon number. These simulations were made possible by the use of a recently developed simulation technique, which is a combination of the Gibbs‐ensemble technique and the configurational‐bias Monte Carlo method. Compared with the conventional Gibbs‐ensemble technique, this method is several orders of magnitude more efficient for pentane and up to a hundred orders of magnitude for octatetracontane. This recent development makes it possible to perform routinely phase equilibrium calculations of complex molecules.

[1]  W. L. Jorgensen Quantum and statistical mechanical studies of liquids. 10. Transferable intermolecular potential functions for water, alcohols, and ethers. Application to liquid water , 2002 .

[2]  Athanassios Z. Panagiotopoulos,et al.  Monte Carlo calculation of phase equilibria for a bead-spring polymeric model , 1994 .

[3]  C. Vega,et al.  Improved results for the potential parameters of methyl and methylene obtained from second virial coefficients of n-alkanes , 1993 .

[4]  Juan J. de Pablo,et al.  Continuum-configurational-bias Monte Carlo simulations of long-chain alkanes , 1993 .

[5]  B. Smit,et al.  Vapor-liquid equilibria of model alkanes. , 1993 .

[6]  I. R. Mcdonald,et al.  Monte Carlo study of the properties of self-assembled monolayers formed by adsorption of CH3(CH2)15SH on the (111) surface of gold , 1993 .

[7]  C. Tsonopoulos,et al.  The Critical Constants of Normal Alkanes From Methane to Polyethylene: II. Application of the Flory Theory , 1993 .

[8]  I. R. Mcdonald,et al.  Monte Carlo simulation of the mechanical relaxation of a self-assembled monolayer. , 1993, Physical review letters.

[9]  P. Rodger Molecular dynamics with anisotropic site potentials : butane , 1992 .

[10]  J. Pablo Simulation of phase equilibria for chain molecules , 1992 .

[11]  B. Smit,et al.  Phase diagrams of Lennard‐Jones fluids , 1992 .

[12]  J. Pablo,et al.  Vapor-liquid equilibria for polyatomic fluids from site-site computer simulations: pure hydrocarbons and binary mixtures containing methane , 1992 .

[13]  Berend Smit,et al.  Direct simulation of phase equilibria of chain molecules. , 1992 .

[14]  S. Toxvaerd,et al.  Second virial coefficients of n-alkanes , 1992 .

[15]  Søren Toxvaerd,et al.  Molecular dynamics simulations of Langmuir monolayers: A study of structure and thermodynamics , 1992 .

[16]  Berend Smit,et al.  Novel scheme to study structural and thermal properties of continuously deformable molecules , 1992 .

[17]  N. G. Almarza,et al.  Monte Carlo simulation of liquid n-alkanes. I: Intramolecular structure and thermodynamics , 1992 .

[18]  Juan J. de Pablo,et al.  Simulation of polyethylene above and below the melting point , 1992 .

[19]  C. Vega,et al.  Potential parameters of methyl and methylene obtained from second virial coefficients of n-alkanes , 1991 .

[20]  Nicholas Quirke,et al.  Molecular dynamics simulation of a Langmuir–Blodgett film , 1991 .

[21]  S. Toxvaerd,et al.  Self‐diffusion in n‐alkane fluid models , 1991 .

[22]  Berend Smit,et al.  Vapor-liquid equilibria of the two-dimensional Lennard-Jones fluid(s) , 1991 .

[23]  J. Clarke,et al.  Molecular dynamics simulation of an amorphous polymer under tension. 1. Phenomenology , 1991 .

[24]  R. Cracknell,et al.  Rotational insertion bias: a novel method for simulating dense phases of structured particles, with particular application to water , 1990 .

[25]  Søren Toxvaerd,et al.  Molecular dynamics calculation of the equation of state of alkanes , 1990 .

[26]  B. Smit,et al.  Vapour-liquid equilibria for quadrupolar Lennard-Jones fluids , 1990 .

[27]  Amyn S. Teja,et al.  The critical properties of n‐alkanes using a low‐residence time flow apparatus , 1989 .

[28]  D. Frenkel,et al.  Computer simulations in the Gibbs ensemble , 1989 .

[29]  Michael L. Klein,et al.  Simulation of a monolayer of alkyl thiol chains , 1989 .

[30]  Wilfred F. van Gunsteren,et al.  Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications , 1989 .

[31]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[32]  Athanassios Z. Panagiotopoulos,et al.  Phase equilibria by simulation in the Gibbs ensemble , 1988 .

[33]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[34]  S. Rice,et al.  A lattice model of a supported monolayer of amphiphile molecules: Monte Carlo simulations , 1988 .

[35]  David Rigby,et al.  Molecular dynamics simulation of polymer liquid and glass. I. Glass transition , 1987 .

[36]  C. Tsonopoulos Critical constants of normal alkanes from methane to polyethylene , 1987 .

[37]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .

[38]  Klein,et al.  Disorder at the bilayer interface in the pseudohexagonal rotator phase of solid n-alkanes. , 1987, Physical review letters.

[39]  Michael L. Klein,et al.  Translational and rotational disorder in solid n‐alkanes: Constant temperature–constant pressure molecular dynamics calculations using infinitely long flexible chains , 1986 .

[40]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid hydrocarbons , 1984 .

[41]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[42]  Herman J. C. Berendsen,et al.  MOLECULAR-DYNAMICS SIMULATION OF A BILAYER-MEMBRANE , 1982 .

[43]  T. Dobashi,et al.  Coexistence curve of polystyrene in methylcyclohexane. I. Range of simple scaling and critical exponents , 1980 .

[44]  Donald E. Williams Nonbonded Potential Parameters Derived from Crystalline Hydrocarbons , 1967 .

[45]  P. Flory,et al.  Statistical Thermodynamics of Chain Molecule Liquids. I. An Equation of State for Normal Paraffin Hydrocarbons , 1964 .

[46]  A. Kreglewski,et al.  A NEW RELATION FOR PHYSICAL PROPERTIES OF n-ALKANES AND n-ALKYL COMPOUNDS1 , 1961 .

[47]  J. Hijmans Phenomenological formulation of the principle of corresponding states for liquids consisting of chain molecules , 1961 .

[48]  K. Nakanishi,et al.  Physical Constants of Organic Liquids. A Nomograph for Estimating Physical Constants of Normal Paraffins and Isoparaffins. , 1960 .

[49]  M. Kurata,et al.  Theory of Normal Paraffin Liquids , 1955 .

[50]  Y. P. Varshni,et al.  Critical Temperatures of Normal Paraffins , 1954 .

[51]  S. S. Mitra An Additive Function of Critical Constants , 1953 .

[52]  Y. P. Varshni Relation between Critical Temperature and Pressure of Normal Paraffins , 1953 .

[53]  I. Prigogine,et al.  On the Application of the Cell Method to r-mer Liquids , 1953 .

[54]  P. Flory Thermodynamics of Heterogeneous Polymers and Their Solutions , 1944 .

[55]  M. Huggins,et al.  Theory of Solutions of High Polymers1 , 1942 .

[56]  P. Flory Thermodynamics of High Polymer Solutions , 1941 .

[57]  JtRN Ilja SIEPMANNt Conflgurational bias Monte Carlo: a new sampling scheme for flexible chains , 2006 .

[58]  S. Chynoweth,et al.  An improved potential model for n-hexadecane molecular dynamics simulations under extreme conditions , 1994 .

[59]  Michael P. Allen,et al.  Computer simulation in chemical physics , 1993 .

[60]  Berend Smit,et al.  Simulating the critical behaviour of complex fluids , 1993, Nature.

[61]  U. C. Klomp,et al.  Non-equilibrium molecular dynamics (NEMD) simulations and the rheological properties of liquid n-hexadecane , 1992 .

[62]  A. Panagiotopoulos Direct Determination of Fluid Phase Equilibria by Simulation in the Gibbs Ensemble: A Review , 1992 .

[63]  D. Tassios,et al.  Thermophysical properties of n-Alkanes from C1 to C20 and their prediction for higher ones , 1990 .

[64]  Daniel J. A. Rosenthal,et al.  Correlation of the critical properties of alkanes and alkanols , 1990 .

[65]  Amyn S. Teja,et al.  The critical temperatures and densities of the n-alkanes from pentane to octadecane , 1990 .

[66]  C. R. A. Catlow,et al.  Computer modelling of fluids polymers and solids , 1989 .

[67]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid alkanes , 1978 .

[68]  Jean-Paul Ryckaert,et al.  Molecular dynamics of liquid n-butane near its boiling point , 1975 .

[69]  John S. Rowlinson,et al.  Liquids and liquid mixtures , 1959 .

[70]  I. Prigogine,et al.  The molecular theory of solutions , 1957 .

[71]  L. Grunberg Critical Temperature and Pressure of n‐Paraffins , 1954 .

[72]  Y. P. Varshni Erratum : Relation Between Critical Temperature and Pressure of Normal Paraffins , 1954 .

[73]  I. Prigogine,et al.  Statistical thermodynamics of r-MERS and r-MER solutions , 1953 .

[74]  A. H. Nissan,et al.  Critical Temperature and Molecular Weight of n-Paraffins , 1948, Nature.

[75]  A. H. Nissan,et al.  The additivity of Tc3 for some non-linear molecules , 1948 .

[76]  M. Huggins Some Properties of Solutions of Long-chain Compounds. , 1942 .

[77]  G. Egloff Physical constants of hydrocarbons , 1939 .