Modelos estructurales del empaquetamiento aleatorio de partículas esféricas de Tobermorita: una aproximación computacional sencilla

In this work, and in order to bring together the atomistic and colloidal viewpoints, we will present a Monte Carlo computational scheme which reproduces the colloidal packing of nano-spherical crystalline tobermorite-like particles. Different Low Density (LD) CS- H and High Density (HD) C-S-H structures will be developed just by varying the computational packing parameters. Finally, the structures resulting from our computational experiments will be analyzed in terms of their densities, surface areas and their mechanical properties.

[1]  Maria C.G. Juenger,et al.  The use of nitrogen adsorption to assess the microstructure of cement paste , 2001 .

[2]  Paul F. McMillan,et al.  Structure of Calcium Silicate Hydrate (C‐S‐H): Near‐, Mid‐, and Far‐Infrared Spectroscopy , 2004 .

[3]  Jianwei Wang,et al.  Molecular dynamics modeling of the structure, dynamics and energetics of mineral–water interfaces: Application to cement materials , 2007 .

[4]  Roland J.-M. Pellenq,et al.  Engineering the bonding scheme in C–S–H: The iono-covalent framework , 2008 .

[5]  Hamlin M. Jennings,et al.  A model for the microstructure of calcium silicate hydrate in cement paste , 2000 .

[6]  Hamlin M. Jennings,et al.  Refinements to colloid model of C-S-H in cement: CM-II , 2008 .

[7]  T. C. Powers,et al.  Physical Properties of Cement Paste , 1960 .

[8]  V. Morales-Flórez,et al.  Structural models of random packing of spheres extended to bricks: simulation of the nanoporous calcium silicate hydrates , 2009 .

[9]  F. Ulm,et al.  The nanogranular nature of C–S–H , 2007 .

[10]  M. Griebel,et al.  A Molecular Dynamic Study of Cementitious Calcium Silicate Hydrate (C–S–H) Gels , 2007 .

[11]  C. M. Dobson,et al.  In situ solid-state NMR studies of Ca3SiO5: hydration at room temperature and at elevated temperatures using 29Si enrichment , 1994, Journal of Materials Science.

[12]  Markus J Buehler,et al.  A realistic molecular model of cement hydrates , 2009, Proceedings of the National Academy of Sciences.

[13]  H. Taylor Proposed Structure for Calcium Silicate Hydrate Gel , 1986 .

[14]  H. Manzano,et al.  Elastic properties of the main species present in Portland cement pastes , 2009 .

[15]  V. Morales-Flórez,et al.  The Cluster Model: A Simulation of the Aerogel Structure as a Hierarchically-Ordered Arrangement of Randomly Packed Spheres , 2005 .

[16]  X. Cong,et al.  17O MAS NMR Investigation of the Structure of Calcium Silicate Hydrate Gel , 1996 .

[17]  Jeffrey J. Thomas,et al.  Analysis of C–S–H gel and cement paste by small-angle neutron scattering , 2005 .

[18]  Jeffrey J. Thomas,et al.  Composition and density of nanoscale calcium-silicate-hydrate in cement. , 2007, Nature materials.

[19]  I. Richardson The calcium silicate hydrates , 2008 .

[20]  X. Cong,et al.  29Si MAS NMR study of the structure of calcium silicate hydrate , 1996 .

[21]  H. Damme,et al.  Microscopic physical basis of the poromechanical behavior of cement-based materials , 2004 .

[22]  I. Richardson Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume , 2004 .

[23]  Jeffrey J. Thomas,et al.  Effects of Decalcification on the Microstructure and Surface Area of Cement and Tricalcium Silicate Pastes | NIST , 2004 .

[24]  H. Jennings,et al.  A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes , 2000 .

[25]  Hamlin M. Jennings,et al.  The Surface Area of Hardened Cement Paste as Measured by Various Techniques , 1999 .

[26]  Roland J.-M. Pellenq,et al.  First-Principles Study of Elastic Constants and Interlayer Interactions of Complex Hydrated Oxides: Case Study of Tobermorite and Jennite , 2009 .