Modelos estructurales del empaquetamiento aleatorio de partículas esféricas de Tobermorita: una aproximación computacional sencilla
暂无分享,去创建一个
Jorge S. Dolado | Hegoi Manzano | R. González-Teresa | Víctor Morales-Flórez | R. González-Teresa | Víctor Morales-Flórez | Hegoi Manzano | J. S. Dolado
[1] Maria C.G. Juenger,et al. The use of nitrogen adsorption to assess the microstructure of cement paste , 2001 .
[2] Paul F. McMillan,et al. Structure of Calcium Silicate Hydrate (C‐S‐H): Near‐, Mid‐, and Far‐Infrared Spectroscopy , 2004 .
[3] Jianwei Wang,et al. Molecular dynamics modeling of the structure, dynamics and energetics of mineral–water interfaces: Application to cement materials , 2007 .
[4] Roland J.-M. Pellenq,et al. Engineering the bonding scheme in C–S–H: The iono-covalent framework , 2008 .
[5] Hamlin M. Jennings,et al. A model for the microstructure of calcium silicate hydrate in cement paste , 2000 .
[6] Hamlin M. Jennings,et al. Refinements to colloid model of C-S-H in cement: CM-II , 2008 .
[7] T. C. Powers,et al. Physical Properties of Cement Paste , 1960 .
[8] V. Morales-Flórez,et al. Structural models of random packing of spheres extended to bricks: simulation of the nanoporous calcium silicate hydrates , 2009 .
[9] F. Ulm,et al. The nanogranular nature of C–S–H , 2007 .
[10] M. Griebel,et al. A Molecular Dynamic Study of Cementitious Calcium Silicate Hydrate (C–S–H) Gels , 2007 .
[11] C. M. Dobson,et al. In situ solid-state NMR studies of Ca3SiO5: hydration at room temperature and at elevated temperatures using 29Si enrichment , 1994, Journal of Materials Science.
[12] Markus J Buehler,et al. A realistic molecular model of cement hydrates , 2009, Proceedings of the National Academy of Sciences.
[13] H. Taylor. Proposed Structure for Calcium Silicate Hydrate Gel , 1986 .
[14] H. Manzano,et al. Elastic properties of the main species present in Portland cement pastes , 2009 .
[15] V. Morales-Flórez,et al. The Cluster Model: A Simulation of the Aerogel Structure as a Hierarchically-Ordered Arrangement of Randomly Packed Spheres , 2005 .
[16] X. Cong,et al. 17O MAS NMR Investigation of the Structure of Calcium Silicate Hydrate Gel , 1996 .
[17] Jeffrey J. Thomas,et al. Analysis of C–S–H gel and cement paste by small-angle neutron scattering , 2005 .
[18] Jeffrey J. Thomas,et al. Composition and density of nanoscale calcium-silicate-hydrate in cement. , 2007, Nature materials.
[19] I. Richardson. The calcium silicate hydrates , 2008 .
[20] X. Cong,et al. 29Si MAS NMR study of the structure of calcium silicate hydrate , 1996 .
[21] H. Damme,et al. Microscopic physical basis of the poromechanical behavior of cement-based materials , 2004 .
[22] I. Richardson. Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, β-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume , 2004 .
[23] Jeffrey J. Thomas,et al. Effects of Decalcification on the Microstructure and Surface Area of Cement and Tricalcium Silicate Pastes | NIST , 2004 .
[24] H. Jennings,et al. A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes , 2000 .
[25] Hamlin M. Jennings,et al. The Surface Area of Hardened Cement Paste as Measured by Various Techniques , 1999 .
[26] Roland J.-M. Pellenq,et al. First-Principles Study of Elastic Constants and Interlayer Interactions of Complex Hydrated Oxides: Case Study of Tobermorite and Jennite , 2009 .