Adaptive Tracking Control of the Minimum-Energy Trajectory for a Mechatronic Motor-Table System

In this paper, a mechatronic motor-table system is realized to plan the minimum input electrical energy trajectory based on the Hamiltonian function. In this system, unknown parameters are identified by particle swarm optimization, and an adaptive tracking controller is designed to track the minimum input electrical energy trajectory to overcome the nonlinear friction and external disturbance. Moreover, trapezoidal trajectory and regulator control are compared with the minimum input electrical energy trajectory by an adaptive tracking controller. Finally, it can be concluded that the minimum input electrical energy trajectory based on the adaptive tracking controller can obtain the minimum input electrical energy and robustness performance for the mechatronic motor-table system. Numerical simulations and experimental results demonstrate the adaptive tracking control strategy successfully in the minimum-energy trajectory.

[1]  Faa-Jeng Lin,et al.  Application of Sliding Mode Control with a Low Pass Filter to the Constantly Rotating Slider-Crank Mechanisms , 1997 .

[2]  P. B. Sujit,et al.  Particle swarm optimization approach for multi-objective composite box-beam design , 2007 .

[3]  Rong-Fong Fung,et al.  System identification of a novel 6-DOF precision positioning table , 2009 .

[4]  R. Eberhart,et al.  Empirical study of particle swarm optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[5]  Rong-Fong Fung,et al.  Adaptive Minimum-Energy Tracking Control for the Mechatronic Elevator System , 2017, IEEE Transactions on Control Systems Technology.

[6]  Russell C. Eberhart,et al.  Comparison between Genetic Algorithms and Particle Swarm Optimization , 1998, Evolutionary Programming.

[7]  Wen-Fang Xie,et al.  Sliding-Mode Observer Based Adaptive Control for Servo Actuator with Friction , 2007, 2007 International Conference on Mechatronics and Automation.

[8]  Kok Kiong Tan,et al.  Sliding-Mode Monitoring and Control of Linear Drives , 2009, IEEE Transactions on Industrial Electronics.

[9]  Vasile Horga,et al.  Minimum Energy and Minimum Time Control of Electrical Drive Systems , 2008 .

[10]  Yi Xiong,et al.  Sliding mode observer for nonlinear uncertain systems , 2001, IEEE Trans. Autom. Control..

[11]  Zwe-Lee Gaing,et al.  A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004 .

[12]  P. J. Angeline,et al.  Using selection to improve particle swarm optimization , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[13]  R. Fung,et al.  Adaptive tracking control for a motor-table system , 2012, 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[14]  Rong-Fong Fung,et al.  Comparison between mathematical modeling and experimental identification of a spatial slider–crank mechanism , 2010 .

[15]  Leonid M. Fridman,et al.  Second-order sliding-mode observer for mechanical systems , 2005, IEEE Transactions on Automatic Control.

[16]  Rong-Fong Fung,et al.  System identification of a dual-stage XY precision positioning table , 2009 .

[17]  Zwe-Lee Gaing A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004, IEEE Transactions on Energy Conversion.

[18]  Petar V. Kokotovic,et al.  Minimum-energy control of a traction motor , 1972 .

[19]  Rong-Fong Fung,et al.  System Identification and Contour Tracking of a Plane-Type 3-DOF $(X,Y,\theta z)$ Precision Positioning Table , 2010, IEEE Transactions on Control Systems Technology.

[20]  Tadeusz Kaczorek Minimum energy control of positive continuous-time linear systems with bounded inputs , 2014 .

[21]  Rong-Fong Fung,et al.  Dynamic modeling of a high-precision self-moving stage with various frictional models , 2008 .

[22]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[23]  R. Fung,et al.  Sliding mode and fuzzy control of toggle mechanism using PM synchronous servomotor drive , 1997 .

[24]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[25]  Rong-Fong Fung,et al.  The self-tuning PID control in a slider–crank mechanism system by applying particle swarm optimization approach , 2006 .

[26]  V. Utkin,et al.  Sliding mode observers. Tutorial , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[27]  Faa-Jeng Lin,et al.  Adaptive control of slider-crank mechanism motion: simulations and experiments , 1997, Int. J. Syst. Sci..

[28]  T. Kaczorek Reachability and minimum energy control of positive 2D systems with delays , 2005 .

[29]  Rong-Fong Fung,et al.  Adaptive vision-based control of a motor-toggle mechanism: Simulations and experiments , 2008 .