Genetic diversity and malaria vaccine design, testing and efficacy: preventing and overcoming ‘vaccine resistant malaria’

The development of effective malaria vaccines may be hindered by extensive genetic diversity in the surface proteins being employed as vaccine antigens. Understanding of the extent and dynamics of genetic diversity in vaccine antigens is needed to guide rational vaccine design and to interpret the results of vaccine efficacy trials conducted in malaria endemic areas. Molecular epidemiological, population genetic, and structural approaches are being employed to try to identify immunologically relevant polymorphism in vaccine antigens. The results of these studies will inform choices of which alleles to include in multivalent or chimeric vaccines; however, additional molecular and immuno‐epidemiological studies in a variety of geographic locations will be necessary for these approaches to succeed. Alternative means of overcoming antigenic diversity are also being explored, including boosting responses to critical conserved regions of current vaccine antigens, identifying new, more conserved and less immunodominant antigens, and developing whole‐organism vaccines. Continued creative application and integration of tools from multiple disciplines, including epidemiology, immunology, molecular biology, and evolutionary genetics and genomics, will likely be required to develop broadly protective vaccines against Plasmodium and other antigenically complex pathogens.

[1]  A. Dicko,et al.  A randomized controlled phase 2 trial of the blood stage AMA1-C1/Alhydrogel malaria vaccine in children in Mali. , 2009, Vaccine.

[2]  V. A. Stewart,et al.  Blood Stage Malaria Vaccine Eliciting High Antigen-Specific Antibody Concentrations Confers No Protection to Young Children in Western Kenya , 2009, PloS one.

[3]  C. Withers-Martinez,et al.  An Inhibitory Antibody Blocks Interactions between Components of the Malarial Invasion Machinery , 2009, PLoS pathogens.

[4]  Victoria C. Barclay,et al.  Mixed allele malaria vaccines: Host protection and within-host selection , 2008, Vaccine.

[5]  Arlo Z. Randall,et al.  Profiling humoral immune responses to P. falciparum infection with protein microarrays , 2008, Proteomics.

[6]  Srinivasan Ramachandran,et al.  MalVac: Database of malarial vaccine candidates , 2008, Malaria Journal.

[7]  Sergei L. Kosakovsky Pond,et al.  Population structure of the genes encoding the polymorphic Plasmodium falciparum apical membrane antigen 1: Implications for vaccine design , 2008, Proceedings of the National Academy of Sciences.

[8]  A. Thomas,et al.  A Diversity-Covering Approach to Immunization with Plasmodium falciparum Apical Membrane Antigen 1 Induces Broader Allelic Recognition and Growth Inhibition Responses in Rabbits , 2008, Infection and Immunity.

[9]  A. Thomas,et al.  Apical membrane antigen 1: a malaria vaccine candidate in review. , 2008, Trends in parasitology.

[10]  Marcel Tanner,et al.  Malaria eradication back on the table. , 2008, Bulletin of the World Health Organization.

[11]  O. Branch,et al.  Genetic diversity of vaccine candidate antigens in Plasmodium falciparum isolates from the Amazon basin of Peru , 2008, Malaria Journal.

[12]  M. Enserink,et al.  Did They Really Say ... Eradication? , 2007, Science.

[13]  C. Drakeley,et al.  How is childhood development of immunity to Plasmodium falciparum enhanced by certain antimalarial interventions? , 2007, Malaria Journal.

[14]  Y. D. Sharma,et al.  Sequence diversity and natural selection at domain I of the apical membrane antigen 1 among Indian Plasmodium falciparum populations , 2007, Malaria Journal.

[15]  D. Crook,et al.  Vaccine Escape Recombinants Emerge after Pneumococcal Vaccination in the United States , 2007, PLoS pathogens.

[16]  A. Benito,et al.  Liver stage antigen 3 isolated from a cDNA library of Plasmodium falciparum erythrocytic stages , 2007, Parasitology Research.

[17]  J. Vulule,et al.  A polymerase chain reaction/ligase detection reaction fluorescent microsphere assay to determine Plasmodium falciparum MSP-119 haplotypes. , 2007, The American journal of tropical medicine and hygiene.

[18]  A. Batchelor,et al.  Structural basis of antigenic escape of a malaria vaccine candidate , 2007, Proceedings of the National Academy of Sciences.

[19]  B. Kanoi,et al.  New concepts in vaccine development in malaria , 2007, Current opinion in infectious diseases.

[20]  M. Good,et al.  A case for whole-parasite malaria vaccines. , 2007, International journal for parasitology.

[21]  A. Thomas,et al.  Fine Mapping of an Epitope Recognized by an Invasion-inhibitory Monoclonal Antibody on the Malaria Vaccine Candidate Apical Membrane Antigen 1* , 2007, Journal of Biological Chemistry.

[22]  S. Kariuki,et al.  A comparative study of the genetic diversity of the 42kDa fragment of the merozoite surface protein 1 in Plasmodium falciparum and P. vivax. , 2007, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[23]  David L. Smith,et al.  World Health Organization , 2016, International Encyclopedia of Public Health.

[24]  D. Conway,et al.  Plasmodium falciparum merozoite surface protein 3 is a target of allele-specific immunity and alleles are maintained by natural selection. , 2007, The Journal of infectious diseases.

[25]  D. Conway,et al.  Differential evidence of natural selection on two leading sporozoite stage malaria vaccine candidate antigens. , 2007, International journal for parasitology.

[26]  M. Enserink,et al.  Malaria. Did they really say ... eradication? , 2007, Science.

[27]  D. Conway,et al.  RTS,S/AS02A Malaria Vaccine Does Not Induce Parasite CSP T Cell Epitope Selection and Reduces Multiplicity of Infection , 2006, PLoS clinical trials.

[28]  S. Kaplan,et al.  Streptococcus pneumoniae Serogroups 15 and 33: An Increasing Cause of Pneumococcal Infections in Children in the United States After the Introduction of the Pneumococcal 7-Valent Conjugate Vaccine , 2006, The Pediatric infectious disease journal.

[29]  J. Ohashi,et al.  Sequence Variation in the T-Cell Epitopes of the Plasmodium falciparum Circumsporozoite Protein among Field Isolates Is Temporally Stable: a 5-Year Longitudinal Study in Southern Vietnam , 2006, Journal of Clinical Microbiology.

[30]  C. Whitney,et al.  Pre- and Postvaccination Clonal Compositions of Invasive Pneumococcal Serotypes for Isolates Collected in the United States in 1999, 2001, and 2002 , 2006, Journal of Clinical Microbiology.

[31]  Patricia De la Vega,et al.  Development, Characterization and Immunogenicity of a Multi-Stage, Multivalent Plasmodium falciparum Vaccine Antigen (FALVAC-1A) Expressed in Escherichia coli , 2006, Human vaccines.

[32]  L. Rénia,et al.  Are Extensive T Cell Epitope Polymorphisms in the Plasmodium falciparum Circumsporozoite Antigen, a Leading Sporozoite Vaccine Candidate, Selected by Immune Pressure?1 , 2005, The Journal of Immunology.

[33]  Aditi Gupta,et al.  Structure of AMA1 from Plasmodium falciparum reveals a clustering of polymorphisms that surround a conserved hydrophobic pocket. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R. Rappuoli,et al.  The impact of genomics on vaccine design. , 2005, Trends in biotechnology.

[35]  V. Murphy,et al.  Allele Specificity of Naturally Acquired Antibody Responses against Plasmodium falciparum Apical Membrane Antigen 1 , 2005, Infection and Immunity.

[36]  D. Conway,et al.  Human antibodies to recombinant protein constructs of Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) and their associations with protection from malaria. , 2004, Vaccine.

[37]  Inacio Mandomando,et al.  Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial , 2004, The Lancet.

[38]  C. John,et al.  Evidence That Invasion-Inhibitory Antibodies Specific for the 19-kDa Fragment of Merozoite Surface Protein-1 (MSP-119) Can Play a Protective Role against Blood-Stage Plasmodium falciparum Infection in Individuals in a Malaria Endemic Area of Africa1 , 2004, The Journal of Immunology.

[39]  M. Molyneux,et al.  Impairment of humoral immunity to Plasmodium falciparum malaria in pregnancy by HIV infection , 2004, The Lancet.

[40]  A. Cowman,et al.  Allelic polymorphisms in apical membrane antigen‐1 are responsible for evasion of antibody‐mediated inhibition in Plasmodium falciparum , 2004, Molecular microbiology.

[41]  Markus S. Mueller,et al.  A Role for Apical Membrane Antigen 1 during Invasion of Hepatocytes by Plasmodium falciparum Sporozoites* , 2004, Journal of Biological Chemistry.

[42]  A. Holder,et al.  Fine Specificity of Serum Antibodies to Plasmodium falciparum Merozoite Surface Protein, PfMSP-119, Predicts Protection from Malaria Infection and High-Density Parasitemia , 2004, Infection and Immunity.

[43]  A. Thomas,et al.  Apical Membrane Antigen 1, a Major Malaria Vaccine Candidate, Mediates the Close Attachment of Invasive Merozoites to Host Red Blood Cells , 2004, Infection and Immunity.

[44]  S. Hoffman,et al.  Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuated Plasmodium falciparum sporozoite vaccine , 2003, Journal of Experimental Biology.

[45]  D. Conway,et al.  Allele frequency-based analyses robustly map sequence sites under balancing selection in a malaria vaccine candidate antigen. , 2003, Genetics.

[46]  T. Horii,et al.  Sequence diversity in the amino-terminal region of the malaria-vaccine candidate serine repeat antigen in natural Plasmodium falciparum populations. , 2003, Parasitology international.

[47]  J. Haynes,et al.  Development and pre-clinical analysis of a Plasmodium falciparum Merozoite Surface Protein-1(42) malaria vaccine. , 2003, Molecular and biochemical parasitology.

[48]  R. Anders,et al.  Geographical Structure of Diversity and Differences between Symptomatic and Asymptomatic Infections for Plasmodium falciparum Vaccine Candidate AMA1 , 2003, Infection and Immunity.

[49]  A. P. Tonon,et al.  Sequence diversity and evolution of the malaria vaccine candidate merozoite surface protein-1 (MSP-1) of Plasmodium falciparum. , 2003, Gene.

[50]  A. Dicko,et al.  Impact of preseason treatment on incidence of falciparum malaria and parasite density at a site for testing malaria vaccines in Bandiagara, Mali. , 2002, The American journal of tropical medicine and hygiene.

[51]  A. Saul,et al.  In Vitro Studies with Recombinant Plasmodium falciparum Apical Membrane Antigen 1 (AMA1): Production and Activity of an AMA1 Vaccine and Generation of a Multiallelic Response , 2002, Infection and Immunity.

[52]  J. Wootton,et al.  Evidence for intragenic recombination in Plasmodium falciparum: identification of a novel allele family in block 2 of merozoite surface protein-1: Asembo Bay Area Cohort Project XIV. , 2002, Molecular and biochemical parasitology.

[53]  S. Kariuki,et al.  A study of genetic diversity in the gene encoding the circumsporozoite protein (CSP) of Plasmodium falciparum from different transmission areas--XVI. Asembo Bay Cohort Project. , 2002, Molecular and biochemical parasitology.

[54]  David L. Tabb,et al.  A proteomic view of the Plasmodium falciparum life cycle , 2002, Nature.

[55]  A. Holder,et al.  The Human Immune Response to Plasmodium falciparum Includes Both Antibodies That Inhibit Merozoite Surface Protein 1 Secondary Processing and Blocking Antibodies , 2002, Infection and Immunity.

[56]  Danny W. Wilson,et al.  Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum , 2002, The Lancet.

[57]  A. Thomas,et al.  High-Level Expression of the Malaria Blood-Stage Vaccine Candidate Plasmodium falciparum Apical Membrane Antigen 1 and Induction of Antibodies That Inhibit Erythrocyte Invasion , 2002, Infection and Immunity.

[58]  Thomas A. Smith,et al.  A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1-2b trial in Papua New Guinea. , 2002, The Journal of infectious diseases.

[59]  O. Branch,et al.  Antibody responses to repetitive epitopes of the circumsporozoite protein, liver stage antigen-1, and merozoite surface protein-2 in infants residing in a Plasmodium falciparum-hyperendemic area of western Kenya. XIII. Asembo Bay Cohort Project. , 2002, The American journal of tropical medicine and hygiene.

[60]  B. Nahlen,et al.  Polymorphism in the gene encoding the Pfs48/45 antigen of Plasmodium falciparum. XI. Asembo Bay Cohort Project. , 2002, Molecular and biochemical parasitology.

[61]  B. Nahlen,et al.  Longitudinal study of natural immune responses to the Plasmodium falciparum apical membrane antigen (AMA-1) in a holoendemic region of malaria in western Kenya: Asembo Bay Cohort Project VIII. , 2001, The American journal of tropical medicine and hygiene.

[62]  D. Conway,et al.  Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. , 2001, Genetics.

[63]  S. Hoffman,et al.  DNA-based vaccines against malaria: status and promise of the Multi-Stage Malaria DNA Vaccine Operation. , 2001, International journal for parasitology.

[64]  R. Anders,et al.  Specificity of the Protective Antibody Response to Apical Membrane Antigen 1 , 2001, Infection and Immunity.

[65]  B. Nahlen,et al.  Polymorphism in the gene encoding the apical membrane antigen-1 (AMA-1) of Plasmodium falciparum. X. Asembo Bay Cohort Project. , 2001, Molecular and biochemical parasitology.

[66]  D. Kaslow,et al.  Short report: IgG1/IgG3 antibody responses to various analogs of recombinant ypfmsp119--a study in immune adults living in areas of Plasmodium falciparum transmission. , 2001, The American journal of tropical medicine and hygiene.

[67]  Interpretability and robustness of sieve analysis models for assessing HIV strain variations in vaccine efficacy. , 2001, Statistics in medicine.

[68]  L. BenMohamed,et al.  Protection against Plasmodium falciparum malaria in chimpanzees by immunization with the conserved pre-erythrocytic liver-stage antigen 3 , 2000, Nature Medicine.

[69]  S. Hoffman,et al.  HLA degenerate T‐cell epitopes from Plasmodium falciparum liver stage‐specific antigen 1 (LSA‐1) are highly conserved in isolates from geographically distinct areas , 2000, Parasite immunology.

[70]  D. Conway,et al.  Allelic lineages of the merozoite surface protein 3 gene in Plasmodium reichenowi and Plasmodium falciparum. , 2000, Molecular and biochemical parasitology.

[71]  D. Conway,et al.  Molecular characterisation of Plasmodium reichenowi apical membrane antigen-1 (AMA-1), comparison with P. falciparum AMA-1, and antibody-mediated inhibition of red cell invasion. , 2000, Molecular and biochemical parasitology.

[72]  D. Conway,et al.  A principal target of human immunity to malaria identified by molecular population genetic and immunological analyses , 2000, Nature Medicine.

[73]  O. Branch,et al.  Anti-merozoite surface protein-1 19-kDa IgG in mother-infant pairs naturally exposed to Plasmodium falciparum: subclass analysis with age, exposure to asexual parasitemia, and protection against malaria. V. The Asembo Bay Cohort Project. , 2000, The Journal of infectious diseases.

[74]  D. Conway,et al.  High-throughput sequence typing of T-cell epitope polymorphisms in Plasmodium falciparum circumsporozoite protein. , 2000, Molecular and biochemical parasitology.

[75]  M. Aidoo,et al.  Field studies of cytotoxic T lymphocytes in malaria infections: implications for malaria vaccine development. , 2000, Parasitology today.

[76]  O. Kaneko,et al.  Selection and genetic drift of polymorphisms within the merozoite surface protein-1 gene of Plasmodium falciparum. , 2000, Gene.

[77]  M. Aidoo,et al.  Cytotoxic T-Lymphocyte Epitopes for HLA-B53 and Other HLA Types in the Malaria Vaccine Candidate Liver-Stage Antigen 3 , 2000, Infection and Immunity.

[78]  R. Coppel,et al.  A Plasmodium falciparum apical membrane antigen-1 (AMA-1) gene apparently generated by intragenic recombination. , 1999, Molecular and biochemical parasitology.

[79]  D. Conway,et al.  Allelic recombination and linkage disequilibrium within Msp-1 of Plasmodium falciparum, the malignant human malaria parasite. , 1999, Gene.

[80]  B. Nahlen,et al.  Predicted and observed alleles of Plasmodium falciparum merozoite surface protein-1 (MSP-1), a potential malaria vaccine antigen. , 1998, Molecular and biochemical parasitology.

[81]  F. Ayala,et al.  Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. , 1998, Genetics.

[82]  O. Branch,et al.  A longitudinal investigation of IgG and IgM antibody responses to the merozoite surface protein-1 19-kiloDalton domain of Plasmodium falciparum in pregnant women and infants: associations with febrile illness, parasitemia, and anemia. , 1998, The American journal of tropical medicine and hygiene.

[83]  F. Ayala,et al.  Escalante AA, Lal AA, Ayala FJ. Genetic polymorphism and natural selection in the malaria parasite Plasmodium falciparum. Genetics 149: 189-202 , 1998 .

[84]  Irwin W. Sherman,et al.  Malaria : parasite biology, pathogenesis, and protection , 1998 .

[85]  F. Ayala,et al.  Plasmodium falciparum antigenic diversity: evidence of clonal population structure. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[86]  A. Holder,et al.  Antibodies that Inhibit Malaria Merozoite Surface Protein–1 Processing and Erythrocyte Invasion Are Blocked by Naturally Acquired Human Antibodies , 1997, The Journal of experimental medicine.

[87]  M. Aidoo,et al.  Cytotoxic T cell reactivity and HLA‐B35 binding of the variant Plasmodium falciparum circumsporozoite protein CD8+ CTL epitope in naturally exposed Kenyan adults , 1997, European journal of immunology.

[88]  H. Lipps,et al.  Limited sequence polymorphism in the Plasmodium falciparum merozoite surface protein 3. , 1997, Molecular and biochemical parasitology.

[89]  T. Horii,et al.  Sequence diversity in the amino-terminal 47 kDa fragment of the Plasmodium falciparum serine repeat antigen. , 1997, Molecular and biochemical parasitology.

[90]  R. Moritz,et al.  The Disulfide Bond Structure of Plasmodium Apical Membrane Antigen-1* , 1996, The Journal of Biological Chemistry.

[91]  E. Paoletti,et al.  NYVAC-Pf7: a poxvirus-vectored, multiantigen, multistage vaccine candidate for Plasmodium falciparum malaria , 1996, Infection and immunity.

[92]  W. Hawley,et al.  Natural immune response to the C-terminal 19-kilodalton domain of Plasmodium falciparum merozoite surface protein 1 , 1996, Infection and immunity.

[93]  R. Coppel,et al.  Diversity of the vaccine candidate AMA-1 of Plasmodium falciparum. , 1996, Molecular and biochemical parasitology.

[94]  A. Holder,et al.  Clinical immunity to Plasmodium falciparum malaria is associated with serum antibodies to the 19-kDa C-terminal fragment of the merozoite surface antigen, PfMSP-1. , 1996, The Journal of infectious diseases.

[95]  S. Hoffman,et al.  Preventing sporozoite invasion of hepatocytes. , 1996 .

[96]  S. Hoffman,et al.  Perspectives on malaria vaccine development. , 1996 .

[97]  S. Hoffman Malaria vaccine development: a multi-immune response approach , 1996 .

[98]  O. Branch,et al.  Identification of T and B cell epitopes recognized by humans in the C-terminal 42-kDa domain of the Plasmodium falciparum merozoite surface protein (MSP)-1. , 1995, Journal of immunology.

[99]  A. Holder,et al.  Serum antibodies from malaria-exposed people recognize conserved epitopes formed by the two epidermal growth factor motifs of MSP1(19), the carboxy-terminal fragment of the major merozoite surface protein of Plasmodium falciparum , 1995, Infection and immunity.

[100]  R. Konings,et al.  Minimal variation in the transmission-blocking vaccine candidate Pfs48/45 of the human malaria parasite Plasmodium falciparum. , 1995, Molecular and biochemical parasitology.

[101]  C. Rogier,et al.  High prevalence of natural antibodies against Plasmodium falciparum 83-kilodalton apical membrane antigen (PF83/AMA-1) as detected by capture-enzyme-linked immunosorbent assay using full-length baculovirus recombinant PF83/AMA-1. , 1994, The American journal of tropical medicine and hygiene.

[102]  A. Hughes,et al.  Allelic variation in the circumsporozoite protein of Plasmodium falciparum from Thai field isolates. , 1994, The American journal of tropical medicine and hygiene.

[103]  A. Thomas,et al.  Differential localization of full-length and processed forms of PF83/AMA-1 an apical membrane antigen of Plasmodium falciparum merozoites. , 1994, Molecular and biochemical parasitology.

[104]  B. Chait,et al.  Structural and functional properties of region II-plus of the malaria circumsporozoite protein , 1994, The Journal of experimental medicine.

[105]  C. Khamboonruang,et al.  Natural amino acid polymorphisms of the circumsporozoite protein of Plasmodium falciparum abrogate specific human CD4+ T cell responsiveness , 1994, European journal of immunology.

[106]  T. McCutchan,et al.  Analysis of sequence diversity in the Plasmodium falciparum merozoite surface protein-1 (MSP-1). , 1993, Molecular and biochemical parasitology.

[107]  M. Alpers,et al.  Diversity in the immunodominant determinants of the circumsporozoite protein of Plasmodium falciparum parasites from malaria-endemic regions of Papua New Guinea and Brazil. , 1992, The American journal of tropical medicine and hygiene.

[108]  A. Holder,et al.  Naturally acquired cellular and humoral immune responses to the major merozoite surface antigen (Pf MSP1) of Plasmodium falciparum are associated with reduced malaria morbidity , 1992, Parasite immunology.

[109]  D. Doolan,et al.  Geographically restricted heterogeneity of the Plasmodium falciparum circumsporozoite protein: relevance for vaccine development , 1992, Infection and immunity.

[110]  A. Holder,et al.  A malaria merozoite surface protein (MSP1)-structure, processing and function. , 1992, Memorias do Instituto Oswaldo Cruz.

[111]  A. Hughes,et al.  Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions. , 1991, Genetics.

[112]  A. Holder,et al.  A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion- inhibiting antibodies , 1990, The Journal of experimental medicine.

[113]  C. Newbold,et al.  Wild isolates of Plasmodium falciparum show extensive polymorphism in T cell epitopes of the circumsporozoite protein. , 1989, Molecular and biochemical parasitology.

[114]  R. Anders,et al.  Integral membrane protein located in the apical complex of Plasmodium falciparum , 1989, Molecular and cellular biology.

[115]  T. McCutchan,et al.  Lack of cross-reactivity between variant T cell determinants from malaria circumsporozoite protein. , 1988, Journal of immunology.

[116]  P. Caspers,et al.  Human T cells recognize polymorphic and non‐polymorphic regions of the Plasmodium falciparum circumsporozoite protein. , 1988, The EMBO journal.

[117]  J. Berzofsky,et al.  Human T-cell recognition of the circumsporozoite protein of Plasmodium falciparum: immunodominant T-cell domains map to the polymorphic regions of the molecule. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[118]  T. McCutchan,et al.  Sequence variation in putative functional domains of the circumsporozoite protein of Plasmodium falciparum. Implications for vaccine development. , 1987, The Journal of biological chemistry.

[119]  K. Tanabe,et al.  Allelic dimorphism in a surface antigen gene of the malaria parasite Plasmodium falciparum. , 1987, Journal of molecular biology.

[120]  R. Schwarz,et al.  Strain variation in the circumsporozoite protein gene of Plasmodium falciparum. , 1987, Molecular and biochemical parasitology.

[121]  J. Rothbard,et al.  Immunogenicity of synthetic peptides from circumsporozoite protein of Plasmodium falciparum. , 1985, Science.

[122]  R. Carter,et al.  Biosynthesis of the target antigens of antibodies blocking transmission of Plasmodium falciparum. , 1984, Molecular and biochemical parasitology.

[123]  J. Weber,et al.  Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. , 1984, Science.

[124]  G. Uilenberg,et al.  Studies on Theileriidae (Sporozoa) in Tanzania. X. A large-scale field trial on immunization against cattle Theileriosis. , 1977, Tropenmedizin und Parasitologie.