Influence of Ferromagnetic Elastic Modulus Relaxation on the Determination of Magnetic Specific Heat of Fe, Ni, and Co

Data are presented for Young's modulus of (110) [001] oriented Fe‐3.1% Si up to 1200°C for various angles to the rolling direction. These data exhibit a strong decrease in Young's modulus with increasing temperature during the ferromagnetic transformation so that the Young's modulus of the paramagnetic state is lower than for the ferromagnetic state. This effect also exists for Ni and Co, and is attributed to a decrease in interatomic forces accompanying the decrease of the exchange interaction between 3d electrons. This ferromagnetic modulus relaxation leads to a new specific heat term CΔθ which represents the energy absorbed in decreasing the mean frequency of the vibrational spectrum. The value of CΔθ, calculated from Young's modulus data, remains appreciable above the Curie temperature, thus accounting for the apparent excess specific heat of the ferromagnetic metals above that temperature. Separation of the total electronic specific heat suggests that three‐fourths of the low‐temperature electronic s...

[1]  P. Beck Metallurgy. (Physical Sciences and Engineering: Electronic Structure and Alloy Chemistry of the Transition Elements) , 1965 .

[2]  R. Hultgren,et al.  Selected Values of Thermodynamic Properties of Metals and Alloys , 1963 .

[3]  F. Herbstein Methods of measuring Debye temperatures and comparison of results for some cubic crystals , 1961 .

[4]  J. Bockris,et al.  Physico–Chemical Measurements at High Temperatures , 1961 .

[5]  G. A. Alers,et al.  Temperature dependent magnetic contributions to the high field elastic constants of nickel and an Fe-Ni alloy , 1960 .

[6]  Christian Boulanger,et al.  Processus de relaxation à haute température , 1958 .

[7]  H. Sato Magnetostriction and Elastic Properties of Ferromagnetic Substances at High Magnetic Fields , 1958 .

[8]  D. E. Gray,et al.  American Institute of Physics Handbook , 1957 .

[9]  A. Paskin,et al.  Analysis of ferromagnetic and antiferro-magnetic second-order transitions , 1956 .

[10]  R. Weiss,et al.  Components of the Thermodynamic Functions of Iron , 1956 .

[11]  J. Friedel XLVI. Anomaly in the rigidity modulus of copper alloys for small concentrations , 1953 .

[12]  N. Mott CXVII. A theory of work-hardening of metal crystals , 1952 .

[13]  R. P. Smith,et al.  Thermodynamic Functions of Iron , 1951 .

[14]  Clarence Zener,et al.  Interaction Between the d Shells in the Transition Metals , 1951 .

[15]  F. C. Nix,et al.  The Thermal Expansion of Pure Metals: Copper, Gold, Aluminum, Nickel, and Iron , 1941 .

[16]  R. Smoluchowski On the Theory of Volume Magnetostriction , 1941 .

[17]  C. Sykes,et al.  The specific heat of nickel from 100? C. to 600? C. , 1938 .

[18]  E. C. Stoner VI.The specific heat of nickel , 1936 .

[19]  S. Siegel,et al.  The Variation of Young's Modulus with Magnetization and Temperature in Nickel , 1936 .

[20]  F. Bloch,et al.  Zur Theorie des Ferromagnetismus , 1930 .

[21]  O. Engler Der Elastizitätsmodul ferromagnetischer Stoffe in Abhängigkeit von der Temperatur und vom Magnetfeld , 1938 .

[22]  N. Mott,et al.  The Theory of the Properties of Metals and Alloys , 1933 .