Nonmonotonic Reasoning, Conditional Objects and Possibility Theory

Abstract This short paper relates the conditional object-based and possibility theory-based approaches for reasoning with conditional statements pervaded with exceptions, to other methods in nonmonotonic reasoning which have been independently proposed: namely, Lehmann's preferential and rational closure entailments which obey normative postulates, the infinitesimal probability approach, and the conditional (modal) logics-based approach. All these methods are shown to be equivalent with respect to their capabilities for reasoning with conditional knowledge although they are based on different modeling frameworks. It thus provides a unified understanding of nonmonotonic consequence relations. More particularly, conditional objects, a purely qualitative counterpart to conditional probabilities, offer a very simple semantics, based on a 3-valued calculus, for the preferential entailment, while in the purely ordinal setting of possibility theory both the preferential and the rational closure entailments can be represented.

[1]  E. W. Adams,et al.  The logic of conditionals , 1975 .

[2]  Grigoris Antoniou,et al.  Nonmonotonic reasoning , 1997 .

[3]  Jérôme Lang Logique possibiliste : aspects formels, deduction automatique, et applications , 1991 .

[4]  James P. Delgrande,et al.  A Formal Approach to Relevance: Extended Abstract , 1994 .

[5]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[6]  Didier Dubois,et al.  Epistemic Entrenchment and Possibilistic Logic , 1991, Artif. Intell..

[7]  Didier Dubois,et al.  Possibilistic Logic, Preferential Models, Non-monotonicity and Related Issues , 1991, IJCAI.

[8]  Didier Dubois,et al.  Inconsistency Management and Prioritized Syntax-Based Entailment , 1993, IJCAI.

[9]  Judea Pearl,et al.  System Z: a Natural Ordering of Defaults with Tractable Applications to Nonmonotonic Reasoning^ , 1990 .

[10]  Didier Dubois,et al.  Expressing Independence in a Possibilistic Framework and its Application to Default Reasoning , 1994, ECAI.

[11]  Peter Gärdenfors,et al.  Nonmonotonic Inference Based on Expectations , 1994, Artif. Intell..

[12]  Sarit Kraus,et al.  Nonmonotonic Reasoning, Preferential Models and Cumulative Logics , 1990, Artif. Intell..

[13]  Craig Boutilier Conditional logics for default reasoning and belief revision , 1992 .

[14]  Salem Benferhat Handling Hard Rules and Default Rules in Possibilistic Logic , 1994, IPMU.

[15]  William Harper,et al.  Causation in decision, belief change, and statistics , 1988 .

[16]  D. Dubois,et al.  Conditional Objects as Nonmonotonic Consequence Relationships , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[17]  Moisés Goldszmidt,et al.  Reasoning with Qualitative Probabilities Can Be Tractable , 1992, UAI.

[18]  Didier Dubois,et al.  Belief Revision with Uncertain Inputs in the Possibilistic Setting , 1996, UAI.

[19]  Didier Dubois,et al.  The logical view of conditioning and its application to possibility and evidence theories , 1990, Int. J. Approx. Reason..

[20]  D Dubois,et al.  Belief structures, possibility theory and decomposable confidence measures on finite sets , 1986 .

[21]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[22]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[23]  Jürgen Dix,et al.  A Tutorial on Nonmonotonic Reasoning , 1991, Nonmonotonic and Inductive Logic.

[24]  Daniel Lehmann,et al.  What does a Conditional Knowledge Base Entail? , 1989, Artif. Intell..

[25]  Hung T. Nguyen,et al.  Conditional inference and logic for intelligent systems - a theory of measure-free conditioning , 1991 .

[26]  Philippe Lamarre,et al.  A Promenade from Monotonicity to Non-Monotonicity Following a Theorem Prover , 1992, KR.

[27]  Luis Fariñas del Cerro,et al.  From Ordering-Based Nonmonotonic Reasoning to Conditional Logics , 1992, Artif. Intell..

[28]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[29]  Hector Geffner,et al.  Default reasoning - causal and conditional theories , 1992 .

[30]  Peter Gärdenfors,et al.  Knowledge in Flux , 1988 .

[31]  Bernhard Nebel,et al.  Base Revision Operations and Schemes: Semantics, Representation and Complexity , 1994, ECAI.

[32]  Léa Sombé Reasoning under incomplete information in artificial intelligence: A comparison of formalisms using a single example , 1990, Int. J. Intell. Syst..

[33]  Henry E. Kyburg,et al.  Studies in Subjective Probability , 1965 .

[34]  Craig Boutilier,et al.  On the revision of conditional belief sets , 1996 .

[35]  Didier Dubois,et al.  Conditional objects, possibility theory and default rules , 1996 .

[36]  Didier Dubois,et al.  Representing Default Rules in Possibilistic Logic , 1992, KR.

[37]  Didier Dubois,et al.  Theorem Proving Under Uncertainty - A Possibility Theory-based Approach , 1987, IJCAI.

[38]  Dov M. Gabbay,et al.  Theoretical Foundations for Non-Monotonic Reasoning in Expert Systems , 1989, Logics and Models of Concurrent Systems.

[39]  Alessandro Saffiotti,et al.  Belief functions and default reasoning , 1995, Artif. Intell..

[40]  Andrew P. Sage,et al.  Uncertainty in Artificial Intelligence , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[41]  H. Prade,et al.  Possibilistic logic , 1994 .

[42]  Krzysztof R. Apt,et al.  Logics and Models of Concurrent Systems , 1989, NATO ASI Series.

[43]  J. M. Larrazabal,et al.  Reasoning about change , 1991 .

[44]  Andreas Herzig,et al.  Conditionals: from philosophy to computer science , 1996 .

[45]  Donald Nute,et al.  Counterfactuals , 1975, Notre Dame J. Formal Log..

[46]  Moisés Goldszmidt,et al.  System-Z+: A Formalism for Reasoning with Variable-Strength Defaults , 1991, AAAI.