Mammalian Metabolic Allometry: Do Intraspecific Variation, Phylogeny, and Regression Models Matter?

Power scaling relationships between body mass and organismal traits are fundamental to biology. Compilations of mammalian masses and basal metabolic rates date back over a century and are used both to support and to assail the universal quarter‐power scaling invoked by the metabolic theory of ecology. However, the slope of this interspecific allometry is typically estimated without accounting for intraspecific variation in body mass or phylogenetic constraints on metabolism. We returned to the original literature and culled nearly all unique measurements of body mass and basal metabolism for 695 mammal species and (1) phylogenetically corrected the data using the fullest available phylogeny, (2) applied several different regression analyses, (3) resampled regressions by drawing randomly selected species from each of the polytomies in the phylogenetic hypothesis at each iteration, and (4) ran these same analyses independently on separate clades. Overall, 95% confidence intervals of slope estimates frequently did not include 0.75, and clade‐specific slopes varied from 0.5 to 0.85, depending on the clade and regression model. Our approach reveals that the choice of analytical model has a systematic influence on the estimated allometry, but irrespective of the model applied, we find little support for a universal metabolic rate–body mass scaling relationship.

[1]  C. Tracy,et al.  Scaling metabolic rate with body mass and inverse body temperature: a test of the Arrhenius fractal supply model , 2008 .

[2]  A. P. Allen,et al.  The mechanistic basis of the metabolic theory of ecology , 2007 .

[3]  P Mueller,et al.  Metabolic rate and environmental productivity: Well-provisioned animals evolved to run and idle fast , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Elgar,et al.  Basal Metabolic Rates in Mammals: Allometry, Phylogeny and Ecology , 1987 .

[5]  Barry G Lovegrove,et al.  The Zoogeography of Mammalian Basal Metabolic Rate , 2000, The American Naturalist.

[6]  Wenyun Zuo,et al.  Revisiting a Model of Ontogenetic Growth: Estimating Model Parameters from Theory and Data , 2008, The American Naturalist.

[7]  Bruce D. Patterson,et al.  The Status of the World's Land and Marine Mammals: Diversity, Threat, and Knowledge , 2008, Science.

[8]  Heusner Aa,et al.  Size and power in mammals. , 1991 .

[9]  C. R. Taylor,et al.  Energetic Cost of Locomotion of Some "Primitive" Mammals , 1981, Physiological Zoology.

[10]  Salvatore J. Agosta,et al.  Reconsidering the mechanistic basis of the metabolic theory of ecology , 2007 .

[11]  Anthony R. Ives,et al.  Using the Past to Predict the Present: Confidence Intervals for Regression Equations in Phylogenetic Comparative Methods , 2000, The American Naturalist.

[12]  Kate E. Jones,et al.  The delayed rise of present-day mammals , 1990, Nature.

[13]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[14]  E. Martins The Comparative Method in Evolutionary Biology, Paul H. Harvey, Mark D. Pagel. Oxford University Press, Oxford (1991), vii, + 239 Price $24.95 paperback , 1992 .

[15]  R. Peters The Ecological Implications of Body Size , 1983 .

[16]  P. Rothery,et al.  Scaling of body temperature in mammals and birds , 2007 .

[17]  J. Speakman,et al.  Measurement of Basal Metabolic Rates: Don't Lose Sight of Reality in the Quest for Comparability , 1993, Physiological Zoology.

[18]  A. Heusner,et al.  Size and power in mammals. , 1991, The Journal of experimental biology.

[19]  Joseph B. Williams,et al.  Basal Metabolic Rate in Carnivores Is Associated with Diet after Controlling for Phylogeny , 2005, Physiological and Biochemical Zoology.

[20]  C. R. White,et al.  The scaling and temperature dependence of vertebrate metabolism , 2006, Biology Letters.

[21]  Mark G. Tjoelker,et al.  Universal scaling of respiratory metabolism, size and nitrogen in plants , 2006, Nature.

[22]  Jan Kozłowski,et al.  Is West, Brown and Enquist's model of allometric scaling mathematically correct and biologically relevant? , 2004 .

[23]  B. McNab Complications Inherent in Scaling the Basal Rate of Metabolism in Mammals , 1988, The Quarterly Review of Biology.

[24]  Evan P. Economo,et al.  Scaling metabolism from organisms to ecosystems , 2003, Nature.

[25]  F J Rohlf,et al.  COMPARATIVE METHODS FOR THE ANALYSIS OF CONTINUOUS VARIABLES: GEOMETRIC INTERPRETATIONS , 2001, Evolution; international journal of organic evolution.

[26]  Han Olff,et al.  Revisiting the evolutionary origin of allometric metabolic scaling in biology , 2008 .

[27]  Geoffrey B. West,et al.  The predominance of quarter-power scaling in biology , 2004 .

[28]  W. Murphy,et al.  Molecular evidence for major placental clades , 2005 .

[29]  P. Painter,et al.  Pulsatile blood flow, shear force, energy dissipation and Murray's Law , 2006, Theoretical Biology and Medical Modelling.

[30]  T. Garland,et al.  PHYLOGENETIC ANALYSES OF THE CORRELATED EVOLUTION OF CONTINUOUS CHARACTERS: A SIMULATION STUDY , 1991, Evolution; international journal of organic evolution.

[31]  C. R. White,et al.  Mammalian basal metabolic rate is proportional to body mass2/3 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  H. Cyr,et al.  AN ILLUSION OF MECHANISTIC UNDERSTANDING , 2004 .

[33]  B. McNab Energy expenditure and conservation in frugivorous and mixed-diet carnivorans , 1995 .

[34]  James H. Brown,et al.  Effects of Size and Temperature on Metabolic Rate , 2001, Science.

[35]  F. Geiser,et al.  Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition? , 2004, Journal of Comparative Physiology B.

[36]  A. King,et al.  Phylogenetic Comparative Analysis: A Modeling Approach for Adaptive Evolution , 2004, The American Naturalist.

[37]  James H. Brown,et al.  Toward a metabolic theory of ecology , 2004 .

[38]  P J Waddell,et al.  Using novel phylogenetic methods to evaluate mammalian mtDNA, including amino acid-invariant sites-LogDet plus site stripping, to detect internal conflicts in the data, with special reference to the positions of hedgehog, armadillo, and elephant. , 1999, Systematic biology.

[39]  Michael LaBarbera,et al.  ANALYZING BODY SIZE AS A FACTOR IN ECOLOGY AND EVOLUTION , 1989 .

[40]  K. L. Blaxter,et al.  The energy metabolism of ruminants. , 1962 .

[41]  James H. Brown,et al.  The fourth dimension of life: fractal geometry and allometric scaling of organisms. , 1999, Science.

[42]  W. Calder Size, Function, and Life History , 1988 .

[43]  D. Forsyth,et al.  Testing the metabolic theory of ecology: allometric scaling exponents in mammals. , 2007, Ecology.

[44]  R. Lacy,et al.  Basal metabolic rates in mammals: taxonomic differences in the allometry of BMR and body mass. , 1985, Comparative biochemistry and physiology. A, Comparative physiology.

[45]  R. Adkins,et al.  Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. , 2004, Systematic biology.

[46]  M. Westoby,et al.  Bivariate line‐fitting methods for allometry , 2006, Biological reviews of the Cambridge Philosophical Society.

[47]  K. Schmidt-Nielsen,et al.  Scaling, why is animal size so important? , 1984 .

[48]  Anastassia M. Makarieva,et al.  Biochemical universality of living matter and its metabolic implications , 2005 .

[49]  Phillip Cassey,et al.  Allometric exponents do not support a universal metabolic allometry. , 2007, Ecology.

[50]  T. F. Hansen STABILIZING SELECTION AND THE COMPARATIVE ANALYSIS OF ADAPTATION , 1997, Evolution; international journal of organic evolution.

[51]  C. R. White,et al.  Does Basal Metabolic Rate Contain a Useful Signal? Mammalian BMR Allometry and Correlations with a Selection of Physiological, Ecological, and Life‐History Variables , 2004, Physiological and Biochemical Zoology.

[52]  O. Bininda-Emonds,et al.  Exploration strategies map along fast–slow metabolic and life‐history continua in muroid rodents , 2009 .

[53]  M. Rubner,et al.  Ueber den Einfluss der Körpergrösse auf Stoff- und Kraftwechsel , 1883 .

[54]  Ramón Díaz-Uriarte,et al.  TESTING HYPOTHESES OF CORRELATED EVOLUTION USING PHYLOGENETICALLY INDEPENDENT CONTRASTS: SENSITIVITY TO DEVIATIONS FROM BROWNIAN MOTION , 1996 .

[55]  A. Grafen The phylogenetic regression. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[56]  T. F. Hansen,et al.  Phylogenies and the Comparative Method: A General Approach to Incorporating Phylogenetic Information into the Analysis of Interspecific Data , 1997, The American Naturalist.

[57]  A. Clarke Is there a Universal Temperature Dependence of metabolism , 2004 .

[58]  J. Archibald,et al.  The rise of placental mammals : origins and relationships of the Major Extant Clades , 2005 .

[59]  Salvatore J. Agosta,et al.  Phylogeny, Regression, and the Allometry of Physiological Traits , 2007, The American Naturalist.

[60]  J. Weitz,et al.  Re-examination of the "3/4-law" of metabolism. , 2000, Journal of theoretical biology.

[61]  Steven L. Chown,et al.  Mean mass-specific metabolic rates are strikingly similar across life's major domains: Evidence for life's metabolic optimum , 2008, Proceedings of the National Academy of Sciences.

[62]  B. G. Lovegrove,et al.  The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum , 2003, Journal of Comparative Physiology B.

[63]  James H. Brown,et al.  The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization , 2005, Journal of Experimental Biology.

[64]  F. Bokma Evidence against universal metabolic allometry , 2004 .

[65]  J. Chaui-Berlinck A critical understanding of the fractal model of metabolic scaling , 2006, Journal of Experimental Biology.

[66]  PHYLOGENY AFFECTS ESTIMATION OF METABOLIC SCALING IN MAMMALS , 2002, Evolution; international journal of organic evolution.

[67]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[68]  B. McNab,et al.  Standard energetics of phyllostomid bats: the inadequacies of phylogenetic-contrast analyses. , 2003, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[69]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[70]  D. S. Glazier,et al.  Beyond the ‘3/4‐power law’: variation in the intra‐and interspecific scaling of metabolic rate in animals , 2005, Biological reviews of the Cambridge Philosophical Society.

[71]  Anthony R. Ives,et al.  An Introduction to Phylogenetically Based Statistical Methods, with a New Method for Confidence Intervals on Ancestral Values , 1999 .

[72]  T. F. Hansen,et al.  TRANSLATING BETWEEN MICROEVOLUTIONARY PROCESS AND MACROEVOLUTIONARY PATTERNS: THE CORRELATION STRUCTURE OF INTERSPECIFIC DATA , 1996, Evolution; international journal of organic evolution.