Valuative Invariants with Higher Moments

In this article we introduce a family of valuative invariants defined in terms of the $p$-th moment of the expected vanishing order. These invariants lie between $\alpha$ and $\delta$-invariants. They vary continuously in the big cone and semi-continuously in families. Most importantly, they can detect the K-stability of Fano varieties, which generalizes the $\alpha$ and $\delta$-criterions in the literature. They are also related to the $d_p$-geometry of weak geodesic rays.

[1]  M. Nakamaye,et al.  Restricted volumes and base loci of linear series , 2006, math/0607221.

[2]  T. Darvas,et al.  Geometric pluripotential theory on Kähler manifolds , 2019, Advances in Complex Geometry.

[3]  Y. Odaka,et al.  On the K-stability of Fano varieties and anticanonical divisors , 2016, Tohoku Mathematical Journal.

[4]  G'abor Sz'ekelyhidi,et al.  The Kähler–Ricci flow and optimal degenerations , 2016, Journal of Differential Geometry.

[5]  Xu Chen,et al.  A minimizing valuation is quasi-monomial , 2019, Annals of Mathematics.

[6]  T. Darvas,et al.  Geodesic stability, the space of rays and uniform convexity in Mabuchi geometry , 2018, 1810.04661.

[7]  G. Tian On Kähler-Einstein metrics on certain Kähler manifolds withC1 (M)>0 , 1987 .

[8]  M. Jonsson,et al.  Singular semipositive metrics on line bundles on varieties over trivially valued fields , 2018 .

[9]  M. Jonsson,et al.  A non-Archimedean approach to K-stability , 2018, 1805.11160.

[10]  G. Tian,et al.  Supremum of Perelman's entropy and Kähler-Ricci flow on a Fano manifold , 2011, 1107.4018.

[11]  Tomoyuki Hisamoto On the limit of spectral measures associated to a test configuration , 2012, 1211.2324.

[12]  P. Eyssidieux,et al.  Monge–Ampère equations in big cohomology classes , 2008 .

[13]  R. Dervan Relative K-stability for Kähler manifolds , 2016, Mathematische Annalen.

[14]  Harold Blum,et al.  OPENNESS OF UNIFORM K-STABILITY IN FAMILIES OF Q-FANO VARIETIES , 2018 .

[15]  Weiyong He Kähler–Ricci soliton and $H$-functional , 2016 .

[16]  Mingchen Xia,et al.  The closures of test configurations and algebraic singularity types , 2020, 2003.04818.

[17]  M. Jonsson,et al.  Uniform K-stability, Duistermaat-Heckman measures and singularities of pairs , 2015, 1504.06568.

[18]  Kento Fujita A valuative criterion for uniform K-stability of ℚ-Fano varieties , 2019, Journal für die reine und angewandte Mathematik (Crelles Journal).

[19]  Jiyuan Han,et al.  Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties , 2020, Geometry & Topology.

[20]  D. Phong,et al.  The Dirichlet problem for degenerate complex Monge-Ampere equations , 2009, 0904.1898.

[21]  M. Jonsson,et al.  Thresholds, valuations, and K-stability , 2017, Advances in Mathematics.

[22]  S. Boucksom,et al.  Spaces of norms, determinant of cohomology and Fekete points in non-Archimedean geometry , 2018, 1805.01016.

[23]  Kento Fujita K-STABILITY OF FANO MANIFOLDS WITH NOT SMALL ALPHA INVARIANTS , 2016, Journal of the Institute of Mathematics of Jussieu.

[24]  Lower bounds on the Calabi functional , 2005, math/0506501.

[25]  Harold Blum,et al.  Openness of uniform K-stability in families of $\mathbb{Q}$-Fano varieties , 2018, 1808.09070.

[26]  Valentino Tosatti,et al.  C1,1 regularity for degenerate complex Monge–Ampère equations and geodesic rays , 2017, 1707.03660.

[27]  Kento Fujita Uniform K-stability and plt blowups of log Fano pairs , 2017, Kyoto Journal of Mathematics.

[28]  David Witt Nyström Test configurations and Okounkov bodies , 2010 .

[29]  Xu Chen,et al.  Openness of K-semistability for Fano varieties , 2019, Duke Mathematical Journal.

[30]  Kewei Zhang,et al.  Basis log canonical thresholds, local intersection estimates, and asymptotically log del Pezzo surfaces , 2018, Selecta Mathematica.

[31]  Gábor Székelyhidi Filtrations and test-configurations , 2011, 1111.4986.

[32]  Robert Lazarsfeld,et al.  Convex Bodies Associated to Linear Series , 2008, 0805.4559.

[33]  Kento Fujita Optimal bounds for the volumes of Kähler-Einstein Fano manifolds , 2015, 1508.04578.

[34]  B. A. Taylor,et al.  The dirichlet problem for a complex Monge-Ampère equation , 1976 .

[35]  Chi Li Geodesic rays and stability in the cscK problem , 2020, 2001.01366.

[36]  Иван Анатольевич Чельцов,et al.  Лог-канонические пороги неособых трехмерных многообразий Фано@@@Log canonical thresholds of smooth Fano threefolds , 2008 .

[37]  Y. Odaka,et al.  Alpha invariant and K-stability of Q-Fano varieties , 2010, 1011.6131.

[38]  G. Tian,et al.  The Uniform Version of Yau–Tian–Donaldson Conjecture for Singular Fano Varieties , 2019, Peking Mathematical Journal.

[39]  Robert Lazarsfeld,et al.  Positivity for vector bundles, and multiplier ideals , 2004 .

[40]  J. Ross,et al.  Analytic test configurations and geodesic rays , 2011, 1101.1612.

[41]  Robert Lazarsfeld,et al.  Positivity in algebraic geometry , 2004 .

[42]  M. Jonsson,et al.  A variational approach to the Yau–Tian–Donaldson conjecture , 2015, Journal of the American Mathematical Society.

[43]  Kewei Zhang,et al.  Basis divisors and balanced metrics , 2020, Journal für die reine und angewandte Mathematik.