HALO7D. III. Chemical Abundances of Milky Way Halo Stars from Medium-resolution Spectra

The Halo Assembly in Lambda Cold Dark Matter: Observations in 7 Dimensions (HALO7D) survey measures the kinematics and chemical properties of stars in the Milky Way (MW) stellar halo to learn about the formation of our Galaxy. HALO7D consists of Keck II/DEIMOS spectroscopy and Hubble Space Telescope–measured proper motions of MW halo main-sequence turnoff stars in the four Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey fields. HALO7D consists of deep pencil beams, making it complementary to other contemporary wide-field surveys. We present the [Fe/H] and [α/Fe] abundances for 113 HALO7D stars in the Galactocentric radial range of ∼10–40 kpc along four separate pointings. Using the full 7D chemodynamical data (3D positions, 3D velocities, and abundances) of HALO7D, we measure the velocity anisotropy, β, of the halo velocity ellipsoid for each field and for different metallicity-binned subsamples. We find that two of the four fields have stars on very radial orbits, while the remaining two have stars on more isotropic orbits. Separating the stars into high-, mid-, and low-[Fe/H] bins at −2.2 and −1.1 dex for each field separately, we find differences in the anisotropies between the fields and between the bins; some fields appear dominated by radial orbits in all bins, while other fields show variation between the [Fe/H] bins. These chemodynamical differences are evidence that the HALO7D fields have different fractional contributions from the progenitors that built up the MW stellar halo. Our results highlight the additional information available on smaller spatial scales compared to results from a spherical average of the stellar halo.

[1]  H. Newberg,et al.  A Swing of the Pendulum: The Chemodynamics of the Local Stellar Halo Indicate Contributions from Several Radial Merger Events , 2022, The Astrophysical Journal.

[2]  J. Bailin,et al.  The Observable Properties of Galaxy Accretion Events in Milky Way–like Galaxies in the FIRE-2 Cosmological Simulations , 2022, The Astrophysical Journal.

[3]  Fei Wang,et al.  Probing the galactic halo with RR lyrae stars − III. The chemical and kinematic properties of the stellar halo , 2022, Monthly Notices of the Royal Astronomical Society.

[4]  Miguel de Val-Borro,et al.  The Astropy Project: Sustaining and Growing a Community-oriented Open-source Project and the Latest Major Release (v5.0) of the Core Package , 2022, The Astrophysical Journal.

[5]  S. Bird,et al.  Contribution of Gaia Sausage to the Galactic Stellar Halo Revealed by K Giants and Blue Horizontal Branch Stars from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope, Sloan Digital Sky Survey, and Gaia , 2021, The Astrophysical Journal.

[6]  H. Newberg,et al.  The Local Stellar Halo is Not Dominated by a Single Radial Merger Event , 2021, The Astrophysical Journal Letters.

[7]  S. Loebman,et al.  Reading the CARDs: The Imprint of Accretion History in the Chemical Abundances of the Milky Way's Stellar Halo , 2021, The Astrophysical Journal.

[8]  T. Beers,et al.  APOGEE Chemical Abundance Patterns of the Massive Milky Way Satellites , 2021, The Astrophysical Journal.

[9]  V. Belokurov,et al.  Chemo-kinematics of the Gaia RR Lyrae: the halo and the disc , 2020, 2008.02280.

[10]  T. Beers,et al.  A Low-mass Stellar-debris Stream Associated with a Globular Cluster Pair in the Halo , 2020, The Astrophysical Journal.

[11]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[12]  Benjamin D. Johnson,et al.  Evidence from the H3 Survey That the Stellar Halo Is Entirely Comprised of Substructure , 2020, The Astrophysical Journal.

[13]  Chao Liu,et al.  Constraints on the Assembly History of the Milky Way's Smooth, Diffuse Stellar Halo from the Metallicity-dependent, Radially Dominated Velocity Anisotropy Profiles Probed with K Giants and BHB Stars Using LAMOST, SDSS/SEGUE, and Gaia , 2020, The Astrophysical Journal.

[14]  Benjamin D. Johnson,et al.  Timing the Early Assembly of the Milky Way with the H3 Survey , 2020, The Astrophysical Journal.

[15]  C. Boeche,et al.  The tale of the tail – disentangling the high transverse velocity stars in Gaia DR2 , 2019, 1912.12679.

[16]  R. Beaton,et al.  Elemental Abundances in M31: The Kinematics and Chemical Evolution of Dwarf Spheroidal Satellite Galaxies , 2019, The Astronomical Journal.

[17]  T. Treu,et al.  Evolution of the Stellar Mass–Metallicity Relation. II. Constraints on Galactic Outflows from the Mg Abundances of Quiescent Galaxies , 2019, The Astrophysical Journal.

[18]  A. Helmi,et al.  Multiple retrograde substructures in the Galactic halo: A shattered view of Galactic history , 2019, Astronomy & Astrophysics.

[19]  V. Belokurov,et al.  The biggest splash , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  Benjamin D. Johnson,et al.  Resolving the Metallicity Distribution of the Stellar Halo with the H3 Survey , 2019, The Astrophysical Journal.

[21]  J. Trump,et al.  The CANDELS/SHARDS Multiwavelength Catalog in GOODS-N: Photometry, Photometric Redshifts, Stellar Masses, Emission-line Fluxes, and Star Formation Rates , 2019, The Astrophysical Journal Supplement Series.

[22]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[23]  Benjamin D. Johnson,et al.  MINESweeper: Spectrophotometric Modeling of Stars in the Gaia Era , 2019, The Astrophysical Journal.

[24]  Benjamin D. Johnson,et al.  Mapping the Stellar Halo with the H3 Spectroscopic Survey , 2019, The Astrophysical Journal.

[25]  Cambridge,et al.  Evidence for two early accretion events that built the Milky Way stellar halo , 2019, Monthly Notices of the Royal Astronomical Society.

[26]  P. Stetson,et al.  Homogeneous photometry – VII. Globular clusters in the Gaia era , 2019, Monthly Notices of the Royal Astronomical Society.

[27]  M. Lehnert,et al.  The Milky Way has no in-situ halo other than the heated thick disc , 2018, Astronomy & Astrophysics.

[28]  E. Kirby,et al.  Detailed Elemental Abundances in the M31 Stellar Halo: Low-Resolution Resolved Stellar Spectroscopy , 2018, 1811.09279.

[29]  G. Barro,et al.  HALO7D I. The Line-of-sight Velocities of Distant Main-sequence Stars in the Milky Way Halo , 2018, The Astrophysical Journal.

[30]  C. Prieto,et al.  The origin of accreted stellar halo populations in the Milky Way using APOGEE,Gaia, and the EAGLE simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[31]  Sergey E. Koposov,et al.  The halo’s ancient metal-rich progenitor revealed with BHB stars , 2018, Monthly Notices of the Royal Astronomical Society.

[32]  Anthony G. A. Brown,et al.  The merger that led to the formation of the Milky Way’s inner stellar halo and thick disk , 2018, Nature.

[33]  Chao Liu,et al.  Anisotropy of the Milky Way’s Stellar Halo Using K Giants from LAMOST and Gaia , 2018, The Astronomical Journal.

[34]  M. Lehnert,et al.  In Disguise or Out of Reach: First Clues about In Situ and Accreted Stars in the Stellar Halo of the Milky Way from Gaia DR2 , 2018, The Astrophysical Journal.

[35]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[36]  T. Treu,et al.  Evolution of the Stellar Mass–Metallicity Relation. I. Galaxies in the z ∼ 0.4 Cluster Cl0024 , 2018, 1802.09560.

[37]  Sergey E. Koposov,et al.  Co-formation of the disc and the stellar halo , 2018, 1802.03414.

[38]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[39]  Sergey E. Koposov,et al.  To the Galactic Virial Radius with Hyper Suprime-Cam , 2017, 1711.09928.

[40]  V. Debattista,et al.  Beta Dips in the Gaia Era: Simulation Predictions of the Galactic Velocity Anisotropy Parameter (β) for Stellar Halos , 2017, 1704.06264.

[41]  P. Hopkins,et al.  Gaia Reveals a Metal-rich, in situ Component of the Local Stellar Halo , 2017, 1704.05463.

[42]  A. Fontana,et al.  CANDELS Multi-wavelength Catalogs: Source Identification and Photometry in the CANDELS Extended Groth Strip , 2017, 1703.05768.

[43]  Paul Torrey,et al.  FIRE-2 simulations: physics versus numerics in galaxy formation , 2017, Monthly Notices of the Royal Astronomical Society.

[44]  A. Fontana,et al.  CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE IDENTIFICATION AND PHOTOMETRY IN THE CANDELS COSMOS SURVEY FIELD , 2016, 1612.07364.

[45]  E. M. Manning,et al.  CHEMISTRY AND KINEMATICS OF THE LATE-FORMING DWARF IRREGULAR GALAXIES LEO A, AQUARIUS, AND SAGITTARIUS DIG , 2016, 1610.08505.

[46]  J. Binney,et al.  Characterizing stellar halo populations – I. An extended distribution function for halo K giants , 2016, 1603.09332.

[47]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[48]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[49]  P. Hopkins A new class of accurate, mesh-free hydrodynamic simulation methods , 2014, 1409.7395.

[50]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[51]  Kirpal Nandra,et al.  CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE DETECTION AND PHOTOMETRY IN THE GOODS-SOUTH FIELD , 2013, 1308.4405.

[52]  J. Dunlop,et al.  A PUBLIC Ks-SELECTED CATALOG IN THE COSMOS/UltraVISTA FIELD: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR POPULATION PARAMETERS, , 2013, 1303.4410.

[53]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[54]  J. Kalirai The age of the Milky Way inner halo , 2012, Nature.

[55]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[56]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[57]  V. Belokurov,et al.  The Milky Way stellar halo out to 40 kpc: squashed, broken but smooth , 2011, 1104.3220.

[58]  E. Kirby Grids of ATLAS9 Model Atmospheres and MOOG Synthetic Spectra , 2011, 1103.1385.

[59]  V. Villar,et al.  UV-TO-FIR ANALYSIS OF SPITZER/IRAC SOURCES IN THE EXTENDED GROTH STRIP. I. MULTI-WAVELENGTH PHOTOMETRY AND SPECTRAL ENERGY DISTRIBUTIONS , 2011, 1101.3308.

[60]  S. Majewski,et al.  MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. II. CATALOG OF STARS IN MILKY WAY DWARF SATELLITE GALAXIES , 2010, 1011.4516.

[61]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[62]  William J. Schuster,et al.  Two distinct halo populations in the solar neighborhood - Evidence from stellar abundance ratios and kinematics , 2010, 1002.4514.

[63]  Brant E. Robertson,et al.  Tracing Galaxy Formation with Stellar Halos. II. Relating Substructure in Phase and Abundance Space to Accretion Histories , 2008, 0807.3911.

[64]  Puragra Guhathakurta,et al.  Metallicity and Alpha-Element Abundance Measurement in Red Giant Stars from Medium-Resolution Spectra , 2008, 0804.3590.

[65]  Amina Helmi,et al.  The stellar halo of the Galaxy , 2008, 0804.0019.

[66]  D. York,et al.  Two stellar components in the halo of the Milky Way , 2007, Nature.

[67]  B. Robertson,et al.  Phase-Space Distributions of Chemical Abundances in Milky Way-Type Galaxy Halos , 2005, astro-ph/0512611.

[68]  B. Robertson,et al.  Chemical Abundance Distributions of Galactic Halos and Their Satellite Systems in a ΛCDM Universe , 2005, astro-ph/0507114.

[69]  J. Bullock,et al.  Tracing Galaxy Formation with Stellar Halos. I. Methods , 2005, astro-ph/0506467.

[70]  Lars Hernquist,et al.  Λ Cold Dark Matter, Stellar Feedback, and the Galactic Halo Abundance Pattern , 2005, astro-ph/0501398.

[71]  S. Majewski,et al.  Dynamics and Stellar Content of the Giant Southern Stream in M31. II. Interpretation , 2004, astro-ph/0406146.

[72]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003, astro-ph/0401052.

[73]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[74]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[75]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[76]  R. Zinn,et al.  Compositions of halo clusters and the formation of the galactic halo , 1978 .

[77]  A. Sandage,et al.  Evidence from the motions of old stars that the Galaxy collapsed. , 1962 .

[78]  G. Wallerstein,et al.  Abundances in G. Dwarfs.VI. a Survey of Field Stars. , 1962 .