Dual embryonic origins of functionally distinct hippocampal O-LM cells revealed by differential 5-HT3AR expression

Forebrain circuits rely upon a relatively small but remarkably diverse population of GABAergic interneurons to bind and entrain large principal cell assemblies for network synchronization and rhythmogenesis. Despite the high degree of heterogeneity across cortical interneurons, members of a given subtype typically exhibit homogeneous developmental origins, neuromodulatory response profiles, morphological characteristics, neurochemical signatures and electrical features. Here we report a surprising divergence among hippocampal oriens-lacunosum moleculare (O-LM) projecting interneurons that have hitherto been considered a homogeneous cell population. Combined immunocytochemical, anatomical and electrophysiological interrogation of Htr3a-GFP and Nkx2-1-cre:RCE mice revealed that O-LM cells parse into a caudal ganglionic eminence–derived subpopulation expressing 5-HT3A receptors (5-HT3ARs) and a medial ganglionic eminence–derived subpopulation lacking 5-HT3ARs. These two cohorts differentially participate in network oscillations, with 5-HT3AR-containing O-LM cell recruitment dictated by serotonergic tone. Thus, members of a seemingly uniform interneuron population can exhibit unique circuit functions and neuromodulatory properties dictated by disparate developmental origins.

[1]  J. Rossier,et al.  Serotonin 3A Receptor Subtype as an Early and Protracted Marker of Cortical Interneuron Subpopulations , 2010, Cerebral cortex.

[2]  P. Somogyi,et al.  Immunolocalization of metabotropic glutamate receptor 1α (mGluR1α) in distinct classes of interneuron in the CA1 region of the rat hippocampus , 2004, Hippocampus.

[3]  C. McBain,et al.  Muscarinic receptor activation tunes mouse stratum oriens interneurones to amplify spike reliability , 2006, The Journal of physiology.

[4]  U. Staubli,et al.  Effects of 5-HT 3 Receptor Antagonism on Hippocampal Cellular Activity in the Freely Moving Rat , 1997 .

[5]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[6]  N. Ropert,et al.  Serotonin facilitates GABAergic transmission in the CA1 region of rat hippocampus in vitro. , 1991, The Journal of physiology.

[7]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[8]  T. Bonhoeffer,et al.  Molecular and Electrophysiological Characterization of GFP-Expressing CA1 Interneurons in GAD65-GFP Mice , 2010, PloS one.

[9]  Bernardo Rudy,et al.  Satb1 Is an Activity-Modulated Transcription Factor Required for the Terminal Differentiation and Connectivity of Medial Ganglionic Eminence-Derived Cortical Interneurons , 2012, The Journal of Neuroscience.

[10]  Z. Borhegyi,et al.  Fast Synaptic Subcortical Control of Hippocampal Circuits , 2009, Science.

[11]  Chris J. McBain,et al.  A Blueprint for the Spatiotemporal Origins of Mouse Hippocampal Interneuron Diversity , 2011, The Journal of Neuroscience.

[12]  G. Miyoshi,et al.  Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic Olig2-Expressing Precursors , 2007, The Journal of Neuroscience.

[13]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[14]  O. Paulsen,et al.  Spike Timing of Distinct Types of GABAergic Interneuron during Hippocampal Gamma Oscillations In Vitro , 2004, The Journal of Neuroscience.

[15]  G. Miyoshi,et al.  Cerebral Cortex doi:10.1093/cercor/bhp038 Characterization of Nkx6-2-Derived , 2009 .

[16]  G. Fishell,et al.  Mechanisms of inhibition within the telencephalon: "where the wild things are". , 2011, Annual review of neuroscience.

[17]  Matthew Grist,et al.  Spatial Genetic Patterning of the Embryonic Neuroepithelium Generates GABAergic Interneuron Diversity in the Adult Cortex , 2007, The Journal of Neuroscience.

[18]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[19]  M. Denaxa,et al.  Maturation-Promoting Activity of SATB1 in MGE-Derived Cortical Interneurons , 2012, Cell reports.

[20]  J. Lawrence,et al.  Cholinergic control of GABA release: emerging parallels between neocortex and hippocampus , 2008, Trends in Neurosciences.

[21]  István Ulbert,et al.  Supplementary material to : Parvalbumin-containing fast-spiking basket cells generate the field potential oscillations induced by cholinergic receptor activation in the hippocampus , 2010 .

[22]  M. Bartos,et al.  Functional characteristics of parvalbumin‐ and cholecystokinin‐expressing basket cells , 2012, The Journal of physiology.

[23]  K. Rockland,et al.  Expression of COUP-TFII Nuclear Receptor in Restricted GABAergic Neuronal Populations in the Adult Rat Hippocampus , 2010, The Journal of Neuroscience.

[24]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[25]  C. McBain,et al.  An update on cholinergic regulation of cholecystokinin‐expressing basket cells , 2012, The Journal of physiology.

[26]  S. Anderson,et al.  Fate mapping Nkx2.1‐lineage cells in the mouse telencephalon , 2008, The Journal of comparative neurology.

[27]  G. Miyoshi,et al.  Common Origins of Hippocampal Ivy and Nitric Oxide Synthase Expressing Neurogliaform Cells , 2010, The Journal of Neuroscience.

[28]  Charles R. Gerfen,et al.  Targeting Cre Recombinase to Specific Neuron Populations with Bacterial Artificial Chromosome Constructs , 2007, The Journal of Neuroscience.

[29]  G. Maccaferri,et al.  Stratum oriens horizontal interneurone diversity and hippocampal network dynamics , 2005, The Journal of physiology.

[30]  Hannah Monyer,et al.  Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillations in vitro , 2005, The Journal of physiology.

[31]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[32]  C. McBain,et al.  Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  M. Whittington,et al.  Segregation of Axonal and Somatic Activity During Fast Network Oscillations , 2012, Science.

[34]  C. McBain,et al.  Cell type‐specific dependence of muscarinic signalling in mouse hippocampal stratum oriens interneurones , 2006, The Journal of physiology.

[35]  Pablo Fuentealba,et al.  Cell Type-Specific Tuning of Hippocampal Interneuron Firing during Gamma Oscillations In Vivo , 2007, The Journal of Neuroscience.

[36]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[37]  Tamás F Freund,et al.  Interneuron Diversity series: Rhythm and mood in perisomatic inhibition , 2003, Trends in Neurosciences.

[38]  P. Somogyi,et al.  Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo , 2003, Nature.

[39]  T. Freund,et al.  GABAergic Interneurons are the Major Postsynaptic Targets of Median Raphe Afferents in the Rat Dentate Gyrus , 1992, The European journal of neuroscience.

[40]  Fiona E. N. LeBeau,et al.  Multiple origins of the cortical gamma rhythm , 2011, Developmental neurobiology.

[41]  Karen L. Smith,et al.  Novel Hippocampal Interneuronal Subtypes Identified Using Transgenic Mice That Express Green Fluorescent Protein in GABAergic Interneurons , 2000, The Journal of Neuroscience.

[42]  Istvan Mody,et al.  Spike timing of lacunosom-moleculare targeting interneurons and CA3 pyramidal cells during high-frequency network oscillations in vitro. , 2007, Journal of neurophysiology.

[43]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[44]  G. Miyoshi,et al.  Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons , 2010, The Journal of Neuroscience.

[45]  P. Golshani,et al.  Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice , 2012, Proceedings of the National Academy of Sciences.

[46]  L. Acsády,et al.  Serotonergic control of the hippocampus via local inhibitory interneurons. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[47]  C. Verney,et al.  Independent Controls for Neocortical Neuron Production and Histogenetic Cell Death , 2000, Developmental Neuroscience.

[48]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[49]  S. Anderson,et al.  The origin and specification of cortical interneurons , 2006, Nature Reviews Neuroscience.

[50]  Chris J. McBain,et al.  Interneurons unbound , 2001, Nature Reviews Neuroscience.

[51]  U. Staubli,et al.  Effects of 5-HT3 receptor antagonism on hippocampal cellular activity in the freely moving rat. , 1997, Journal of neurophysiology.