Design of H-inf Controller with Tuning of Weights Using Particle Swarm Optimization Method

In this paper a new method based on a particle swarm optimization (PSO) algorithm for tuning the weighing functions parameters to design an  H controller is presented. The PSO algorithm is used to minimize the infinity norm of the transfer function of the nominal closed loop system to obtain the optimal parameters of the weighting function. This method is applied to a typical industrial pneumatic servo actuator with system uncertainty and wide range of load variation to illustrate the design procedure of the proposed method. It is shown that the proposed method can simplify the design procedure of  H control to obtain optimal robust controller

[1]  Boumediène Allaoua,et al.  Setting Up PID DC Motor Speed Control Alteration Parameters Using Particle Swarm Optimization Strategy , 2009 .

[2]  Petko H. Petkov,et al.  Robust control design with MATLAB , 2005 .

[3]  Hossein Nezamabadi-pour,et al.  A PSO-Based Optimum Design of PID Controller for a Linear Brushless DC Motor , 2007 .

[4]  S. Sumathi,et al.  Particle Swarm Optimization Based LFC and AVR of Autonomous Power Generating System , 2010 .

[5]  M. Karpenko,et al.  QFT design of a PI controller with dynamic pressure feedback for positioning a pneumatic actuator , 2004, Proceedings of the 2004 American Control Conference.

[6]  S. M. Bashi,et al.  Robust Controller Design For Positioning A pneumatic Servo Actuator , 2009 .

[7]  Pascal Bigras,et al.  Force Control Loop Affected by Bounded Uncertainties and Unbounded Inputs for Pneumatic Actuator Systems , 2008 .

[8]  Cheng-Hong Yang,et al.  Linearly Decreasing Weight Particle Swarm Optimization with Accelerated Strategy for Data Clustering , 2022 .

[9]  Mahamod Ismail,et al.  Particle swarm optimization for mobile network design , 2009, IEICE Electron. Express.

[10]  Nariman Sepehri,et al.  Development and experimental evaluation of a fixed-gain nonlinear control for a low-cost pneumatic actuator , 2006 .

[11]  Yong Zhu,et al.  Control of pneumatic systems for free space and interaction tasks with system and environmental uncertainties , 2006 .

[12]  Fang Liu,et al.  Two effective control algorithms for a pneumatic system , 2006 .

[13]  A. Sinha Linear systems : optimal and robust control , 2007 .

[14]  R. Y. Chiang,et al.  MATHLAB - Robust Control Toolbox , 2000 .

[15]  Mohammed E. El-Telbany,et al.  Employing Particle Swarm Optimizer and Genetic Algorithms for Optimal Tuning of PID Controllers: A Comparative Study , 2007 .

[16]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[17]  Nasser Sadati,et al.  Design of an H∞ PID controller using particle swarm optimization , 2009 .