Scaling Laplacian Pyramids

Laplacian pyramid--based Laurent polynomial (LP$^2$) matrices are generated by Laurent polynomial column vectors and have long been studied in connection with Laplacian pyramidal algorithms in signal processing. In this paper, we investigate when such matrices are scalable, that is, when right multiplication by Laurent polynomial diagonal matrices results in paraunitary matrices. The notion of scalability has recently been introduced in the context of finite frame theory and can be considered as a preconditioning method for frames. This paper significantly extends the current research on scalable frames to the setting of polyphase representations of filter banks. Furthermore, as applications of our main results we propose new construction methods for tight wavelet filter banks and tight wavelet frames.

[1]  B. M. Fulk MATH , 1992 .

[2]  Maria Charina,et al.  An Algebraic Perspective on Multivariate Tight Wavelet Frames , 2013, Constructive Approximation.

[3]  Martin S. Copenhaver,et al.  Diagram vectors and Tight Frame Scaling in Finite Dimensions , 2013, 1303.1159.

[4]  P. Vaidyanathan Multirate Systems And Filter Banks , 1992 .

[5]  Hugo J. Woerdeman,et al.  Positive extensions, Fejér-Riesz factorization and autoregressive filters in two variables , 2004 .

[6]  A. Ron,et al.  CAPlets : wavelet representations without wavelets , 2005 .

[7]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[8]  K. Chen,et al.  Matrix preconditioning techniques and applications , 2005 .

[9]  J. Geronimo,et al.  Fejér-Riesz factorizations and the structure of bivariate polynomials orthogonal on the bi-circle , 2012, 1206.1526.

[10]  Fang Zheng,et al.  Multi-D Wavelet Filter Bank Design Using Quillen-Suslin Theorem for Laurent Polynomials , 2014, IEEE Transactions on Signal Processing.

[11]  Friedrich Riesz,et al.  Über ein Probelm des Herrn Carathéodory. , 1916 .

[12]  Gitta Kutyniok,et al.  Scalable Frames and Convex Geometry , 2013, ArXiv.

[13]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[14]  Gitta Kutyniok,et al.  Scalable Frames , 2012, ArXiv.

[15]  Stephen Boyd,et al.  Existence and uniqueness of optimal matrix scalings , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[16]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Peter G. Casazza,et al.  Finite Frames: Theory and Applications , 2012 .

[18]  Minh N. Do,et al.  Pyramidal directional filter banks and curvelets , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[19]  L. Fejér Über trigonometrische Polynome. , 1916 .

[20]  Amos Ron,et al.  High-Performance Very Local Riesz Wavelet Bases of L2(Rn) , 2012, SIAM J. Math. Anal..

[21]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[22]  Minh N. Do,et al.  Framing pyramids , 2003, IEEE Trans. Signal Process..

[23]  Xuemei Chen,et al.  A note on scalable frames , 2013, 1301.7292.

[24]  Youngmi Hur Effortless Critical Representation of Laplacian Pyramid , 2010, IEEE Transactions on Signal Processing.

[25]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .