Scaling Laplacian Pyramids
暂无分享,去创建一个
[1] B. M. Fulk. MATH , 1992 .
[2] Maria Charina,et al. An Algebraic Perspective on Multivariate Tight Wavelet Frames , 2013, Constructive Approximation.
[3] Martin S. Copenhaver,et al. Diagram vectors and Tight Frame Scaling in Finite Dimensions , 2013, 1303.1159.
[4] P. Vaidyanathan. Multirate Systems And Filter Banks , 1992 .
[5] Hugo J. Woerdeman,et al. Positive extensions, Fejér-Riesz factorization and autoregressive filters in two variables , 2004 .
[6] A. Ron,et al. CAPlets : wavelet representations without wavelets , 2005 .
[7] C. Micchelli,et al. Stationary Subdivision , 1991 .
[8] K. Chen,et al. Matrix preconditioning techniques and applications , 2005 .
[9] J. Geronimo,et al. Fejér-Riesz factorizations and the structure of bivariate polynomials orthogonal on the bi-circle , 2012, 1206.1526.
[10] Fang Zheng,et al. Multi-D Wavelet Filter Bank Design Using Quillen-Suslin Theorem for Laurent Polynomials , 2014, IEEE Transactions on Signal Processing.
[11] Friedrich Riesz,et al. Über ein Probelm des Herrn Carathéodory. , 1916 .
[12] Gitta Kutyniok,et al. Scalable Frames and Convex Geometry , 2013, ArXiv.
[13] I. Daubechies. Ten Lectures on Wavelets , 1992 .
[14] Gitta Kutyniok,et al. Scalable Frames , 2012, ArXiv.
[15] Stephen Boyd,et al. Existence and uniqueness of optimal matrix scalings , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.
[16] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[17] Peter G. Casazza,et al. Finite Frames: Theory and Applications , 2012 .
[18] Minh N. Do,et al. Pyramidal directional filter banks and curvelets , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).
[19] L. Fejér. Über trigonometrische Polynome. , 1916 .
[20] Amos Ron,et al. High-Performance Very Local Riesz Wavelet Bases of L2(Rn) , 2012, SIAM J. Math. Anal..
[21] Edward H. Adelson,et al. The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..
[22] Minh N. Do,et al. Framing pyramids , 2003, IEEE Trans. Signal Process..
[23] Xuemei Chen,et al. A note on scalable frames , 2013, 1301.7292.
[24] Youngmi Hur. Effortless Critical Representation of Laplacian Pyramid , 2010, IEEE Transactions on Signal Processing.
[25] I. Daubechies,et al. Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .