Normalization in Econometrics

The issue of normalization arises whenever two different values for a vector of unknown parameters imply the identical economic model. A normalization implies not just a rule for selecting which among equivalent points to call the maximum likelihood estimate (MLE), but also governs the topography of the set of points that go into a small-sample confidence interval associated with that MLE. A poor normalization can lead to multimodal distributions, disjoint confidence intervals, and very misleading characterizations of the true statistical uncertainty. This paper introduces an identification principle as a framework upon which a normalization should be imposed, according to which the boundaries of the allowable parameter space should correspond to loci along which the model is locally unidentified. We illustrate these issues with examples taken from mixture models, structural vector autoregressions, and cointegration models.

[1]  J. Drèze,et al.  Bayesian full information analysis of simultaneous equations , 1976 .

[2]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[3]  M. Arellano,et al.  Symmetrically Normalized Instrumental-Variable Estimation Using Panel Data , 1999 .

[4]  Daniel F. Waggoner,et al.  Likelihood-Preserving Normalization in Multiple Equation Models , 2000 .

[5]  J. Geweke,et al.  Bayesian reduced rank regression in econometrics , 1996 .

[6]  B. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[7]  George Leitmann,et al.  Dynamics and Control , 2020, Fundamentals of Robotics.

[8]  C. Sims,et al.  What Does Monetary Policy Do , 1996 .

[9]  C. Robert,et al.  Computational and Inferential Difficulties with Mixture Posterior Distributions , 2000 .

[10]  D. Rubin,et al.  Estimation and Hypothesis Testing in Finite Mixture Models , 1985 .

[11]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[12]  C. Manski Identification of Binary Response Models , 1988 .

[13]  Herman K. van Dijk,et al.  Bayesian Approaches to Cointegration , 2006 .

[14]  Frank Kleibergen,et al.  BAYESIAN SIMULTANEOUS EQUATIONS ANALYSIS USING REDUCED RANK STRUCTURES , 1998, Econometric Theory.

[15]  Jonathan H. Wright,et al.  A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments , 2002 .

[16]  C. O'Connor An introduction to multivariate statistical analysis: 2nd edn. by T. W. Anderson. 675 pp. Wiley, New York (1984) , 1987 .

[17]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[18]  Siddhartha Chib,et al.  Markov Chain Monte Carlo Simulation Methods in Econometrics , 1996, Econometric Theory.

[19]  Stefan M. Rüger,et al.  Clustering in Weight Space of Feedforward Nets , 1996, ICANN.

[20]  Identification and Normalization in Markov Switching Models of 'Business Cycles' , 2004 .

[21]  James D. Hamilton Time Series Analysis , 1994 .

[22]  Herman K. van Dijk,et al.  On the Shape of the Likelihood/Posterior in Cointegration Models , 1994, Econometric Theory.

[23]  Wayne S. DeSarbo,et al.  Bayesian inference for finite mixtures of generalized linear models with random effects , 2000 .

[24]  John C. Chao,et al.  Jeffreys prior analysis of the simultaneous equations model in the case with n+1 endogenous variables , 2002 .

[25]  T. W. Anderson Origins of the limited information maximum likelihood and two-stage least squares estimators , 2005 .

[26]  Rodney W. Strachan,et al.  Model uncertainty and Bayesian model averaging in vector autoregressive processes , 2006 .

[27]  C. Sims Are forecasting models usable for policy analysis , 1986 .

[28]  M. Stephens Dealing with label switching in mixture models , 2000 .

[29]  T. Rothenberg Identification in Parametric Models , 1971 .

[30]  Peter C. B. Phillips,et al.  Some exact distribution theory for maximum likelihood estimators of cointegrating coefficients , 1994 .

[31]  Jinyong Hahn,et al.  A New Specification Test for the Validity of Instrumental Variables , 2000 .

[32]  Robert B. Litterman Forecasting with Bayesian Vector Autoregressions-Five Years of Experience , 1984 .

[33]  Tjalling C. Koopmans,et al.  Identification problems in economic model construction , 1949 .

[34]  Daniel F. Waggoner,et al.  A Gibbs sampler for structural vector autoregressions , 2003 .

[35]  Tao Zha,et al.  Error Bands for Impulse Responses , 1999 .

[36]  C. Sims,et al.  Bayesian methods for dynamic multivariate models , 1998 .

[37]  H. Ruben ON THE MOMENTS OF ORDER STATISTICS IN SAMPLES FROM NORMAL POPULATIONS , 1954 .

[38]  Agostino Nobile,et al.  Comment: Bayesian multinomial probit models with a normalization constraint , 2000 .

[39]  Richard Paap,et al.  Priors, posteriors and Bayes factors for a Bayesian analysis of cointegration , 1998 .

[40]  Charles H. Whiteman,et al.  Bayesian Leading Indicators: Measuring and Predicting Economic Conditions in Iowa , 1998 .

[41]  Mattias Villani,et al.  BAYESIAN REFERENCE ANALYSIS OF COINTEGRATION , 2005, Econometric Theory.

[42]  P. Schmidt,et al.  Limited-Dependent and Qualitative Variables in Econometrics. , 1984 .

[43]  Giovanni Forchini,et al.  CONDITIONAL INFERENCE FOR POSSIBLY UNIDENTIFIED STRUCTURAL EQUATIONS , 2003, Econometric Theory.

[44]  M. Villani Bayesian point estimation of the cointegration space , 2006 .

[45]  Likelihood preserving normalization in multiple equation models 1 , 2000 .

[46]  S. Johansen STATISTICAL ANALYSIS OF COINTEGRATION VECTORS , 1988 .

[47]  Serena Ng,et al.  Estimation and Inference in Nearly Unbalanced, Nearly Cointegrated Systems. , 1997 .

[48]  Motohiro Yogo,et al.  Estimating the Elasticity of Intertemporal Substitution When Instruments Are Weak , 2003, Review of Economics and Statistics.

[49]  J. Stock,et al.  Instrumental Variables Regression with Weak Instruments , 1994 .

[50]  G. Maddala Limited-dependent and qualitative variables in econometrics: Introduction , 1983 .

[51]  Robert Hecht-Nielsen,et al.  On the Geometry of Feedforward Neural Network Error Surfaces , 1993, Neural Computation.

[52]  Norman R. Swanson,et al.  Consistent Estimation with a Large Number of Weak Instruments , 2005 .

[53]  R. Lund Identification and Inference for Econometric Models: Essays in Honor of Thomas Rothenberg , 2006 .

[54]  S. Frühwirth-Schnatter Markov chain Monte Carlo Estimation of Classical and Dynamic Switching and Mixture Models , 2001 .

[55]  J. Stock,et al.  Instrumental Variables Regression with Weak Instruments , 1994 .

[56]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[57]  Jacques H. Dreze,et al.  Bayesian Limited Information Analysis of the Simultaneous Equations Model , 1976 .

[58]  W. Hauck,et al.  Wald's Test as Applied to Hypotheses in Logit Analysis , 1977 .

[59]  Jacques H. Dreze,et al.  BAYESIAN ANALYSIS OF SIMULTANEOUS EQUATION SYSTEMS , 1983 .

[60]  Gary L. Tietjen,et al.  Estimation and Hypothesis Testing , 1986 .

[61]  Tjalling C. Koopmans,et al.  Studies in Econometric Method , 1954 .

[62]  Michael R. Veall,et al.  Formulating Wald Tests of Nonlinear Restrictions , 1985 .