Topological analysis of data

Propelled by a fast evolving landscape of techniques and datasets, data science is growing rapidly. Against this background, topological data analysis (TDA) has carved itself a niche for the analysis of datasets that present complex interactions and rich structures. Its distinctive feature, topology, allows TDA to detect, quantify and compare the mesoscopic structures of data, while also providing a language able to encode interactions beyond networks. Here we briefly present the TDA paradigm and some applications, in order to highlight its relevance to the data science community.

[1]  Emanuela Merelli,et al.  Using Topological Data Analysis for diagnosis pulmonary embolism , 2014, 1409.5020.

[2]  R. J. Wilson Analysis situs , 1985 .

[3]  Morten L. Kringelbach,et al.  Insights into Brain Architectures from the Homological Scaffolds of Functional Connectivity Networks , 2016, Front. Syst. Neurosci..

[4]  E. Pastalkova,et al.  Clique topology reveals intrinsic geometric structure in neural correlations , 2015, Proceedings of the National Academy of Sciences.

[5]  Ulrich Bauer,et al.  PHAT - Persistent Homology Algorithms Toolbox , 2014, ICMS.

[6]  J. Marron,et al.  Persistent Homology Analysis of Brain Artery Trees. , 2014, The annals of applied statistics.

[7]  C. J. Carstens,et al.  Persistent Homology of Collaboration Networks , 2013 .

[8]  Leonidas J. Guibas,et al.  Persistence Barcodes for Shapes , 2005, Int. J. Shape Model..

[9]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[10]  Matthew Kahle,et al.  Sharp vanishing thresholds for cohomology of random flag complexes , 2012, 1207.0149.

[11]  Massimiliano Zanin,et al.  Combining complex networks and data mining: why and how , 2016 .

[12]  Herbert Edelsbrunner,et al.  Topological persistence and simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[13]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[14]  Vladimir A. Kovalevsky,et al.  Finite topology as applied to image analysis , 1989, Comput. Vis. Graph. Image Process..

[15]  Roberto Franzosi,et al.  Persistent homology analysis of phase transitions. , 2016, Physical review. E.

[16]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[17]  Konstantin Mischaikow,et al.  Morse Theory for Filtrations and Efficient Computation of Persistent Homology , 2013, Discret. Comput. Geom..

[18]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[19]  Francesco Vaccarino,et al.  Topological Strata of Weighted Complex Networks , 2013, PloS one.

[20]  André Panisson,et al.  Unveiling patterns of international communities in a global city using mobile phone data , 2015, EPJ Data Science.

[21]  Duncan J. Watts,et al.  The Structure and Dynamics of Networks: (Princeton Studies in Complexity) , 2006 .

[22]  Facundo Mémoli,et al.  Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition , 2007, PBG@Eurographics.

[23]  Ulrich Bauer,et al.  Statistical Topological Data Analysis - A Kernel Perspective , 2015, NIPS.

[24]  H. Poincaré,et al.  On Analysis Situs , 2010 .

[25]  G. Carlsson,et al.  Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival , 2011, Proceedings of the National Academy of Sciences.

[26]  Ginestra Bianconi,et al.  Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes. , 2016, Physical review. E.

[27]  G. Petri,et al.  Homological scaffolds of brain functional networks , 2014, Journal of The Royal Society Interface.

[28]  Emerson G. Escolar,et al.  Persistent homology and many-body atomic structure for medium-range order in the glass , 2015, Nanotechnology.

[29]  P. Y. Lum,et al.  Extracting insights from the shape of complex data using topology , 2013, Scientific Reports.

[30]  Luis Mateus Rocha,et al.  Control of complex networks requires both structure and dynamics , 2015, Scientific Reports.

[31]  Jean M. Vettel,et al.  Cliques and cavities in the human connectome , 2016, Journal of Computational Neuroscience.

[32]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[33]  Wei Guo,et al.  Toward automated prediction of manufacturing productivity based on feature selection using topological data analysis , 2016, 2016 IEEE International Symposium on Assembly and Manufacturing (ISAM).

[34]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[35]  Herbert Edelsbrunner,et al.  On the Computational Complexity of Betti Numbers: Reductions from Matrix Rank , 2014, SODA.

[36]  Ulrich Bauer,et al.  Clear and Compress: Computing Persistent Homology in Chunks , 2013, Topological Methods in Data Analysis and Visualization.

[37]  Jean-Daniel Boissonnat,et al.  The Compressed Annotation Matrix: An Efficient Data Structure for Computing Persistent Cohomology , 2013, ESA.

[38]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[39]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[40]  Matteo Rucco,et al.  Persistent Homology on RNA Secondary Structure Space , 2016, BICT.

[41]  Klaus B. Schebesch,et al.  Topological Data Analysis for Extracting Hidden Features of Client Data , 2015, OR.

[42]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[43]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[44]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[45]  P. S. Aleksandrov,et al.  POINCARÉ AND TOPOLOGY , 1972 .

[46]  Emerson G. Escolar,et al.  Hierarchical structures of amorphous solids characterized by persistent homology , 2015, Proceedings of the National Academy of Sciences.

[47]  Ann E Sizemore,et al.  Closures and Cavities in the Human Connectome , 2016 .

[48]  Paul T. Pearson,et al.  Analyze High-Dimensional Data Using Discrete Morse Theory , 2015 .

[49]  Jaejun Yoo,et al.  Topological persistence vineyard for dynamic functional brain connectivity during resting and gaming stages , 2016, Journal of Neuroscience Methods.

[50]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[51]  O. Sporns,et al.  Network neuroscience , 2017, Nature Neuroscience.

[52]  A. Barabasi,et al.  Universal resilience patterns in complex networks , 2016, Nature.

[53]  Kelin Xia,et al.  Persistent homology analysis of protein structure, flexibility, and folding , 2014, International journal for numerical methods in biomedical engineering.

[54]  Benjamin S. Glicksberg,et al.  Identification of type 2 diabetes subgroups through topological analysis of patient similarity , 2015, Science Translational Medicine.

[55]  Vitaliy Kurlin,et al.  A higher-dimensional homologically persistent skeleton , 2019, Adv. Appl. Math..

[56]  Seth Lloyd,et al.  Quantum algorithms for topological and geometric analysis of data , 2016, Nature Communications.

[57]  Mason A. Porter,et al.  A roadmap for the computation of persistent homology , 2015, EPJ Data Science.

[58]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[59]  Chao Chen,et al.  Annotating Simplices with a Homology Basis and Its Applications , 2011, SWAT.

[60]  N. Steenrod,et al.  Foundations of Algebraic Topology , 1952 .

[61]  G. Carlsson,et al.  Topology of viral evolution , 2013, Proceedings of the National Academy of Sciences.