Learning Physical Scattering Patterns from PolSAR Images by Using Complex-Valued CNN

Full-polarimetric synthetic aperture radar (SAR) images have the ability to provide physical patterns of the earth observation, no more than geometric information. In order to learn physical patterns from non-full-polarimetric SAR images, a complex-valued CNN is leveraged to learn a model containing physical parameters. The parameters are learned from the original complex scattering matrix of full-polarimetric SAR images and they can be adopted to extract physical patterns from non-full-polarimetric SAR images. Cloude and Pottier’s H-α division, as the annotation principle, is computed by way of coherence matrix. We perform experiments on (German Aerospace Center) DLR’s full-polarimetric, airborne F-SAR data, demonstrating that extracting physical patterns from non-full-polarimetric images is feasible. The comparative results illustrate that: 1) The best physical categoric patterns can be extracted from HV and VH polarimetric images in general, while performance from HH and VV polarimetric images are limited; 2) Cross-polarimetric SAR images have greater ability for surface and volume scattering, while co-polarimetric ones are better for multiple scattering extraction.