A scalable time–space multiscale domain decomposition method: adaptive time scale separation

This paper deals with the scalability of a time–space multiscale domain decomposition method in the framework of time-dependent nonlinear problems. The strategy which is being studied is the multiscale LATIN method, whose scalability was shown in previous works when the distinction between macro and micro parts is made on the spatial level alone. The objective of this work is to propose an explanation of the loss-of-scalability phenomenon, along with a remedy which guarantees full scalability provided a suitable macro time part is chosen. This technique, which is quite general, is based on an adaptive separation of scales which is achieved by adding the most relevant functions to the temporal macrobasis automatically. When this method is used, the numerical scalability of the strategy is confirmed by the examples presented.

[1]  Mark S. Shephard,et al.  Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .

[2]  P. Ladevèze Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .

[3]  Guillaume Rateau,et al.  The Arlequin method as a flexible engineering design tool , 2005 .

[4]  Damijan Markovic,et al.  Strong coupling methods in multi-phase and multi-scale modeling of inelastic behavior of heterogeneous structures , 2003 .

[5]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .

[6]  Pierre Alart,et al.  A scalable multiscale LATIN method adapted to nonsmooth discrete media , 2008 .

[7]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[8]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[9]  P. Ladevèze,et al.  A large time increment approach for cyclic viscoplasticity , 1993 .

[10]  Pierre Ladevèze,et al.  Nonlinear Computational Structural Mechanics , 1999 .

[11]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[12]  J. Tinsley Oden,et al.  Hierarchical modeling of heterogeneous solids , 1996 .

[13]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[14]  Kumar Vemaganti,et al.  Hierarchical modeling of heterogeneous solids , 2006 .

[15]  David Dureisseix,et al.  A computational strategy for poroelastic problems with a time interface between coupled physics , 2008 .

[16]  S. Sanghi,et al.  Proper orthogonal decomposition and its applications , 2011 .

[17]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[18]  A. Nouy A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .

[19]  Pierre Gosselet,et al.  A Nonlinear Dual-Domain Decomposition Method: Application to Structural Problems with Damage , 2008 .

[20]  J. Mandel Balancing domain decomposition , 1993 .

[21]  J. N. Sharma,et al.  Reflection of piezothermoelastic waves from the charge and stress free boundary of a transversely isotropic half space , 2008 .

[22]  Peter Wriggers,et al.  An adaptive method for homogenization in orthotropic nonlinear elasticity , 2007 .

[23]  David Dureisseix,et al.  A micro / macro approach for parallel computing of heterogeneous structures , 2000 .

[24]  Alain Combescure,et al.  Multi‐time‐step and two‐scale domain decomposition method for non‐linear structural dynamics , 2003 .

[25]  J. Fish,et al.  Multi-grid method for periodic heterogeneous media Part 2: Multiscale modeling and quality control in multidimensional case , 1995 .

[26]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[27]  Wing Kam Liu,et al.  Stability of multi-time step partitioned integrators for first-order finite element systems , 1985 .

[28]  Carlo L. Bottasso,et al.  Multiscale temporal integration , 2002 .

[29]  F. Devries,et al.  Homogenization and damage for composite structures , 1989 .

[30]  Tajeddine Guennouni Sur une méthode de calcul de structures soumises à des chargements cycliques : l'homogénéisation en temps , 1988 .

[31]  David Dureisseix,et al.  A micro–macro and parallel computational strategy for highly heterogeneous structures , 2001 .

[32]  I. Babuska,et al.  The generalized finite element method , 2001 .

[33]  Alain Combescure,et al.  A numerical scheme to couple subdomains with different time-steps for predominantly linear transient analysis , 2002 .

[34]  P. Ladevèze,et al.  On a Multiscale Computational Strategy with Time and Space Homogenization for Structural Mechanics , 2003 .

[35]  H. P. Lee,et al.  PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY , 2002 .

[36]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[37]  J. Fish,et al.  Multiscale asymptotic homogenization for multiphysics problems with multiple spatial and temporal scales: a coupled thermo-viscoelastic example problem , 2002 .

[38]  A. Chatterjee An introduction to the proper orthogonal decomposition , 2000 .

[39]  Olivier Allix,et al.  Nonlinear localization strategies for domain decomposition methods: Application to post-buckling analyses , 2007 .

[40]  Y. Maday,et al.  A parareal in time procedure for the control of partial differential equations , 2002 .

[41]  Pierre-Alain Boucard,et al.  A suitable computational strategy for the parametric analysis of problems with multiple contact , 2003 .

[42]  Pierre Ladevèze,et al.  On multiscale computational mechanics with time-space homogenization , 2008 .

[43]  P. Ladevèze,et al.  A multiscale computational approach for contact problems , 2002 .

[44]  Francisco Chinesta,et al.  Alleviating mesh constraints : Model reduction, parallel time integration and high resolution homogenization , 2008 .

[45]  Charbel Farhat,et al.  Time‐decomposed parallel time‐integrators: theory and feasibility studies for fluid, structure, and fluid–structure applications , 2003 .

[46]  Pierre Ladevèze,et al.  A Computational Damage Micromodel of Laminated Composites , 2005 .

[47]  Olivier Allix,et al.  A three-scale domain decomposition method for the 3D analysis of debonding in laminates , 2009, 1109.6111.

[48]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[49]  Jacob Fish,et al.  Multigrid method for periodic heterogeneous media Part 1: Convergence studies for one-dimensional case , 1995 .