Improved method for blind estimation of the variance of mixed noise using weighted LMS line fitting algorithm

The paper addresses blind evaluation of the parameters of mixed noise in images. The conventional approach is based on line fitting in the scatter-plot of local variance estimates using LMS algorithm. This does not utilize the fact that the points in the scatter pot typically appear in clusters that depend on the image. It is shown that the use of weighted LMS algorithm that takes into account the number of points in clusters provides considerable improvement in the accuracy of line fitting and, thus, better estimation of the parameters of mixed noise.

[1]  Cecilia Moloney,et al.  Automatic estimation of the noise variance in SAR images for use in speckle filtering , 1999, NSIP.

[2]  John P. Kerekes,et al.  Hyperspectral Imaging System Modeling , 2003 .

[3]  Nikolay N. Ponomarenko,et al.  Filtering of radar images based on blind evaluation of noise characteristics , 2008, Remote Sensing.

[4]  Nikolay N. Ponomarenko,et al.  Locally Adaptive DCT Filtering for Signal-Dependent Noise Removal , 2007, EURASIP J. Adv. Signal Process..

[5]  B. Vozel,et al.  Improved Noise Parametr Estimation and Filtering of MM-Band SLAR Images , 2007, 2007 International Kharkov Symposium Physics and Engrg. of Millimeter and Sub-Millimeter Waves (MSMW).

[6]  I. Selesnick,et al.  Bivariate shrinkage with local variance estimation , 2002, IEEE Signal Processing Letters.

[7]  A. Barducci,et al.  Noise modelling and estimation of hyperspectral data from airborne imaging spectrometers , 2006 .

[8]  Vladimir V. Lukin,et al.  Segmentation-based method for blind evaluation of noise variance in images , 2008 .

[9]  Luciano Alparone,et al.  Reliably estimating the speckle noise from SAR data , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[10]  Fionn Murtagh,et al.  Image restoration with noise suppression using a multiresolution support. , 1995 .

[11]  Sebastiano Battiato,et al.  Noise Reduction for CFA Image Sensors Exploiting HVS Behaviour , 2009, Sensors.

[12]  Karen O. Egiazarian,et al.  Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data , 2008, IEEE Transactions on Image Processing.

[13]  A. Barducci,et al.  CHRIS-PROBA PERFORMANCE EVALUATION : SIGNAL-TO-NOISE RATIO , INSTRUMENT EFFICIENCY AND DATA QUALITY FROM ACQUISITIONS OVER SAN ROSSORE ( ITALY ) TEST SITE , 2005 .

[14]  Kacem Chehdi,et al.  Unsupervised variational classification through image multi-thresholding , 2005, 2005 13th European Signal Processing Conference.

[15]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[16]  Nikolay N. Ponomarenko,et al.  Methods for Blind Evaluation of Noise Variance in Multichannel Optical and Radar Images , 2006 .

[17]  Sebastiano Battiato,et al.  Signal-dependent raw image denoising using sensor noise characterization via multiple acquisitions , 2010, Electronic Imaging.

[18]  Vladimir V. Lukin,et al.  Joint Estimation of Multiplicative and Impulsive Noise Parameters in Remote Sensing Images with Fractal Structure , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[19]  Rakhi C. Motwani,et al.  Survey of Image Denoising Techniques , 2004 .

[20]  George A. F. Seber,et al.  Linear regression analysis , 1977 .

[21]  Vladimir V. Lukin,et al.  Blind evaluation of noise variance in images using myriad operation , 2002, IS&T/SPIE Electronic Imaging.

[22]  Carlos López-Martínez,et al.  On the Extension of Multidimensional Speckle Noise Model From Single-Look to Multilook SAR Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.