Shotgun Proteomics in Neuroscience

Mass spectrometry-based proteomics is increasingly used to address basic and clinical questions in biomedical research through studies of differential protein expression, protein-protein interactions, and posttranslational modifications. The complex structural and functional organization of the human brain warrants the application of high-throughput, systematic approaches to understand the functional alterations under normal physiological conditions and the perturbations of neurological diseases. This primer focuses on shotgun-proteomics-based tandem mass spectrometry for the identification of proteins in a complex mixture. It describes the basic concepts of protein differential expression analysis and posttranslational modification analysis and discusses several strategies to improve the coverage of the proteome.

[1]  John R Yates,et al.  Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. , 2007, Journal of proteome research.

[2]  Steven P Gygi,et al.  Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations , 2005, Nature Methods.

[3]  Blagoy Blagoev,et al.  A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling , 2003, Nature Biotechnology.

[4]  G. Siuzdak,et al.  Desorption–ionization mass spectrometry on porous silicon , 1999, Nature.

[5]  S. Ficarro,et al.  Enrichment and analysis of peptide subsets using fluorous affinity tags and mass spectrometry , 2005, Nature Biotechnology.

[6]  E. Friauf,et al.  Proteomic Analysis of Brain Plasma Membranes Isolated by Affinity Two-phase Partitioning*S , 2006, Molecular & Cellular Proteomics.

[7]  M. Mann,et al.  Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast , 2008, Nature.

[8]  N. Kelleher,et al.  Decoding protein modifications using top-down mass spectrometry , 2007, Nature Methods.

[9]  Ronald J. Moore,et al.  Enrichment of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. , 2002, Journal of proteome research.

[10]  D. Hochstrasser,et al.  From Proteins to Proteomes: Large Scale Protein Identification by Two-Dimensional Electrophoresis and Arnino Acid Analysis , 1996, Bio/Technology.

[11]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[12]  S. Gygi,et al.  Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[13]  A. Beynon,et al.  Hair Bundles Are Specialized for ATP Delivery via Creatine Kinase , 2007, Neuron.

[14]  Martin Kussmann,et al.  Experimental and computational approaches to quantitative proteomics: status quo and outlook. , 2008, Journal of proteomics.

[15]  I. Fridovich,et al.  Competitive inhibition of enzyme activity by urea. , 1961, The Journal of biological chemistry.

[16]  R. Aebersold,et al.  Mass Spectrometry and Protein Analysis , 2006, Science.

[17]  Lance Wells,et al.  Mapping Sites of O-GlcNAc Modification Using Affinity Tags for Serine and Threonine Post-translational Modifications* , 2002, Molecular & Cellular Proteomics.

[18]  M. Hearn,et al.  High-resolution reversed-phase high-performance liquid chromatography of peptides and proteins. , 1996, Methods in enzymology.

[19]  M. Mann,et al.  RNA and RNA Binding Proteins Participate in Early Stages of Cell Spreading through Spreading Initiation Centers , 2004, Cell.

[20]  Mark S Friedrichs,et al.  Guidelines for the Routine Application of the Peptide Hits Technique , 2005, Journal of the American Society for Mass Spectrometry.

[21]  J. Rush,et al.  Immunoaffinity profiling of tyrosine phosphorylation in cancer cells , 2005, Nature Biotechnology.

[22]  John R Yates,et al.  Nuclear Membrane Proteins with Potential Disease Links Found by Subtractive Proteomics , 2003, Science.

[23]  A. Schmidt,et al.  A novel strategy for quantitative proteomics using isotope‐coded protein labels , 2005, Proteomics.

[24]  B. Séraphin,et al.  A generic protein purification method for protein complex characterization and proteome exploration , 1999, Nature Biotechnology.

[25]  M. Feany,et al.  Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. , 2005, Nature neuroscience.

[26]  Diana S Chu,et al.  Sperm chromatin proteomics identifies evolutionarily conserved fertility factors , 2006, Nature.

[27]  Jeroen Krijgsveld,et al.  Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics , 2003, Nature Biotechnology.

[28]  Bingwen Lu,et al.  Automatic validation of phosphopeptide identifications from tandem mass spectra. , 2007, Analytical chemistry.

[29]  Steven P Gygi,et al.  Semiquantitative Proteomic Analysis of Rat Forebrain Postsynaptic Density Fractions by Mass Spectrometry* , 2004, Journal of Biological Chemistry.

[30]  Mark D'Ascenzo,et al.  8‐Plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease , 2007, Proteomics.

[31]  J. Trimmer,et al.  Graded Regulation of the Kv2.1 Potassium Channel by Variable Phosphorylation , 2006, Science.

[32]  K. Martin,et al.  NMDA Receptor Activation Dephosphorylates AMPA Receptor Glutamate Receptor 1 Subunits at Threonine 840 , 2007, The Journal of Neuroscience.

[33]  Ruedi Aebersold,et al.  Reproducible isolation of distinct, overlapping segments of the phosphoproteome , 2007, Nature Methods.

[34]  Yu-Chie Chen,et al.  Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. , 2005, Analytical chemistry.

[35]  Mu-ming Poo,et al.  Localized Synaptic Potentiation by BDNF Requires Local Protein Synthesis in the Developing Axon , 2002, Neuron.

[36]  Eckart D Gundelfinger,et al.  Proteomics Analysis of Rat Brain Postsynaptic Density , 2004, Journal of Biological Chemistry.

[37]  Hua Lin,et al.  Quantifying reproducibility for differential proteomics: noise analysis for protein liquid chromatography-mass spectrometry of human serum , 2004, Bioinform..

[38]  Steven C. Lawlor,et al.  GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways , 2002, Nature Genetics.

[39]  S. Bryant,et al.  Open mass spectrometry search algorithm. , 2004, Journal of proteome research.

[40]  R. Aebersold,et al.  An Essential Switch in Subunit Composition of a Chromatin Remodeling Complex during Neural Development , 2007, Neuron.

[41]  Steven P. Gygi,et al.  Large-scale phosphorylation analysis of mouse liver , 2007, Proceedings of the National Academy of Sciences.

[42]  G. Hurst,et al.  Comparison of digestion protocols for microgram quantities of enriched protein samples. , 2007, Journal of proteome research.

[43]  K. Resing,et al.  Improving reproducibility and sensitivity in identifying human proteins by shotgun proteomics. , 2004, Analytical chemistry.

[44]  Scott A. Busby,et al.  Novel linear quadrupole ion trap/FT mass spectrometer: performance characterization and use in the comparative analysis of histone H3 post-translational modifications. , 2004, Journal of proteome research.

[45]  Jacques Colinge,et al.  Differential proteomics via probabilistic peptide identification scores. , 2005, Analytical chemistry.

[46]  Juan Pablo Albar,et al.  Advances in the analysis of protein phosphorylation. , 2008, Journal of proteome research.

[47]  M. Mann,et al.  In-gel digestion for mass spectrometric characterization of proteins and proteomes , 2006, Nature Protocols.

[48]  E. Schuman,et al.  Local translational control in dendrites and its role in long-term synaptic plasticity. , 2005, Journal of neurobiology.

[49]  P. Andrews,et al.  Surfactant effects on protein structure examined by electrospray ionization mass spectrometry , 1994, Protein science : a publication of the Protein Society.

[50]  Richard E Higgs,et al.  Comprehensive label-free method for the relative quantification of proteins from biological samples. , 2005, Journal of proteome research.

[51]  Steven P Gygi,et al.  Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry , 2007, Nature Methods.

[52]  K. Howell,et al.  Hepatic Golgi fractions resolved into membrane and content subfractions , 1982, The Journal of cell biology.

[53]  A. Shevchenko,et al.  Evaluation of the efficiency of in-gel digestion of proteins by peptide isotopic labeling and MALDI mass spectrometry. , 2001, Analytical biochemistry.

[54]  G. Glish,et al.  Tandem mass spectrometry in quadrupole ion trap and ion cyclotron resonance mass spectrometers. , 2005, Methods in enzymology.

[55]  Peter R. Baker,et al.  Quantitative Analysis of Synaptic Phosphorylation and Protein Expression*S , 2008, Molecular & Cellular Proteomics.

[56]  J. Yates,et al.  An automated multidimensional protein identification technology for shotgun proteomics. , 2001, Analytical chemistry.

[57]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[58]  Tsuyoshi Tabata,et al.  Quantitative mouse brain proteomics using culture-derived isotope tags as internal standards , 2005, Nature Biotechnology.

[59]  X. Yao,et al.  Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. , 2001, Analytical chemistry.

[60]  Christine C. Wu,et al.  Shotgun analysis of integral membrane proteins facilitated by elevated temperature. , 2007, Analytical chemistry.

[61]  John R. Yates,et al.  Neural Palmitoyl-Proteomics Reveals Dynamic Synaptic Palmitoylation , 2008, Nature.

[62]  J. Gebler,et al.  Orthogonality of separation in two-dimensional liquid chromatography. , 2005, Analytical chemistry.

[63]  Timothy J Griffin,et al.  iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. , 2007, Journal of proteome research.

[64]  K. Sandra,et al.  Highly efficient peptide separations in proteomics Part 1. Unidimensional high performance liquid chromatography. , 2008, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[65]  J. Yates,et al.  A method for the comprehensive proteomic analysis of membrane proteins , 2003, Nature Biotechnology.

[66]  Alexandre V. Podtelejnikov,et al.  Proteomic Mapping of Brain Plasma Membrane Proteins*S , 2005, Molecular & Cellular Proteomics.

[67]  J. Lacaille,et al.  Characterization of an RNA Granule from Developing Brain *S , 2006, Molecular & Cellular Proteomics.

[68]  Hye Kyong Kweon,et al.  Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. , 2006, Analytical chemistry.

[69]  Qing‐Yu He,et al.  Proteomic analysis of neonatal mouse brain: evidence for hypoxia- and ischemia-induced dephosphorylation of collapsin response mediator proteins. , 2008, Journal of proteome research.

[70]  E. O’Shea,et al.  Global analysis of protein expression in yeast , 2003, Nature.

[71]  Jing-lan Wang,et al.  Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver. , 2008, Journal of proteome research.

[72]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[73]  B. Frey,et al.  Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing , 2008, Nature Genetics.

[74]  Nobutaka Hirokawa,et al.  Kinesin Transports RNA Isolation and Characterization of an RNA-Transporting Granule , 2004, Neuron.

[75]  D. Piomelli,et al.  A neuroscientist's guide to lipidomics , 2007, Nature Reviews Neuroscience.

[76]  Alexey I Nesvizhskii,et al.  Analysis and validation of proteomic data generated by tandem mass spectrometry , 2007, Nature Methods.

[77]  Robertson Craig,et al.  TANDEM: matching proteins with tandem mass spectra. , 2004, Bioinformatics.

[78]  Christine C. Wu,et al.  Proteomics of Integral Membrane Proteins — Theory and Application , 2007 .

[79]  John D. Venable,et al.  Automated ultra-high-pressure multidimensional protein identification technology (UHP-MudPIT) for improved peptide identification of proteomic samples. , 2006, Analytical chemistry.

[80]  Joseph Zaia,et al.  Mass spectrometry and the emerging field of glycomics. , 2008, Chemistry & biology.

[81]  Ka Wan Li,et al.  Differential Transport and Local Translation of Cytoskeletal, Injury-Response, and Neurodegeneration Protein mRNAs in Axons , 2005, The Journal of Neuroscience.

[82]  Richard D. Smith,et al.  High-efficiency nanoscale liquid chromatography coupled on-line with mass spectrometry using nanoelectrospray ionization for proteomics. , 2002, Analytical chemistry.

[83]  T. Maeda,et al.  Preparative two‐dimensional gel electrophoresis with agarose gels in the first dimension for high molecular mass proteins , 2000, Electrophoresis.

[84]  D. Russell,et al.  Proteolysis in mixed organic-aqueous solvent systems: applications for peptide mass mapping using mass spectrometry. , 2001, Analytical chemistry.

[85]  M. Mann,et al.  Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. , 2008, Journal of proteome research.

[86]  O. Steward,et al.  Compartmentalized Synthesis and Degradation of Proteins in Neurons , 2003, Neuron.

[87]  Kit-Yi Leung,et al.  Novel Phosphorylation Sites in Tau from Alzheimer Brain Support a Role for Casein Kinase 1 in Disease Pathogenesis* , 2007, Journal of Biological Chemistry.

[88]  V. De Pinto,et al.  Presence of a voltage-dependent anion channel 1 in the rat postsynaptic density fraction. , 1999, Neuroreport.

[89]  Richard D. Smith,et al.  Proteomics by FTICR mass spectrometry: top down and bottom up. , 2005, Mass spectrometry reviews.

[90]  A. Posch,et al.  Fractionation of complex protein mixtures by liquid-phase isoelectric focusing. , 2008, Methods in molecular biology.

[91]  M. Molloy,et al.  Two-dimensional electrophoresis of membrane proteins using immobilized pH gradients. , 2000, Analytical biochemistry.

[92]  J. Yates,et al.  Performance of a linear ion trap-Orbitrap hybrid for peptide analysis. , 2006, Analytical chemistry.

[93]  H. Mansvelder,et al.  Prefrontal cortex AMPA receptor plasticity is crucial for cue-induced relapse to heroin-seeking , 2008, Nature Neuroscience.

[94]  Lan Ma,et al.  Hippocampal Long-Term Potentiation Is Reduced by Chronic Opiate Treatment and Can Be Restored by Re-Exposure to Opiates , 2002, The Journal of Neuroscience.

[95]  C. Fenselau,et al.  Unbiased examination of changes in plasma membrane proteins in drug resistant cancer cells. , 2005, Journal of proteome research.

[96]  M. Molloy,et al.  Membrane proteins and proteomics: Un amour impossible? , 2000, Electrophoresis.

[97]  Howard Schulman,et al.  Global changes to the ubiquitin system in Huntington's disease , 2007, Nature.

[98]  Jens M. Rick,et al.  Quantitative mass spectrometry in proteomics: a critical review , 2007, Analytical and bioanalytical chemistry.

[99]  D. Hochstrasser,et al.  The dynamic range of protein expression: A challenge for proteomic research , 2000, Electrophoresis.

[100]  T. Veenstra,et al.  Quantitative analysis of bacterial and mammalian proteomes using a combination of cysteine affinity tags and 15N-metabolic labeling. , 2001, Analytical chemistry.

[101]  Joshua E. Elias,et al.  Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. , 2003, Journal of proteome research.

[102]  Thomas A Neubert,et al.  Identification and Verification of Novel Rodent Postsynaptic Density Proteins*S , 2004, Molecular & Cellular Proteomics.

[103]  Gilbert S Omenn,et al.  An evaluation, comparison, and accurate benchmarking of several publicly available MS/MS search algorithms: Sensitivity and specificity analysis , 2005, Proteomics.

[104]  Fred W. McLafferty,et al.  Top-down identification and characterization of biomolecules by mass spectrometry , 2008, Journal of the American Society for Mass Spectrometry.

[105]  Leigh Anderson,et al.  Quantitative Mass Spectrometric Multiple Reaction Monitoring Assays for Major Plasma Proteins* , 2006, Molecular & Cellular Proteomics.

[106]  D. Geschwind Tau Phosphorylation, Tangles, and Neurodegeneration The Chicken or the Egg? , 2003, Neuron.

[107]  S. Carr,et al.  Quantitative, Multiplexed Assays for Low Abundance Proteins in Plasma by Targeted Mass Spectrometry and Stable Isotope Dilution*S , 2007, Molecular & Cellular Proteomics.

[108]  Costel C. Darie,et al.  Stable Isotopic Labeling by Amino Acids in Cultured Primary Neurons , 2008, Molecular & Cellular Proteomics.

[109]  Scott B Ficarro,et al.  Probing the dynamics of O-GlcNAc glycosylation in the brain using quantitative proteomics. , 2007, Nature chemical biology.

[110]  Eric T. Wang,et al.  Alternative Isoform Regulation in Human Tissue Transcriptomes , 2008, Nature.

[111]  J. Yates,et al.  Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice , 2008, Proceedings of the National Academy of Sciences.

[112]  D. Stolz,et al.  Examination of transcellular membrane protein polarity of bovine aortic endothelial cells in vitro using the cationic colloidal silica microbead membrane-isolation procedure. , 1992, Journal of cell science.

[113]  A. Masselot,et al.  OLAV: Towards high‐throughput tandem mass spectrometry data identification , 2003, Proteomics.

[114]  John R Yates,et al.  Identification and characterization of novel nicotinic receptor‐associated proteins in Caenorhabditis elegans , 2005, The EMBO journal.

[115]  Steven P Gygi,et al.  Large-scale characterization of HeLa cell nuclear phosphoproteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[116]  J. Yates,et al.  A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction , 2007, Nature Neuroscience.

[117]  G. Siuzdak,et al.  From exogenous to endogenous: the inevitable imprint of mass spectrometry in metabolomics. , 2007, Journal of proteome research.

[118]  Daniel B. McClatchy,et al.  Comparisons of mass spectrometry compatible surfactants for global analysis of the mammalian brain proteome. , 2008, Analytical chemistry.

[119]  L. Eichacker,et al.  Sample preparation by in-gel digestion for mass spectrometry-based proteomics , 2007, Analytical and bioanalytical chemistry.

[120]  David L Tabb,et al.  Efficient and specific trypsin digestion of microgram to nanogram quantities of proteins in organic-aqueous solvent systems. , 2006, Analytical chemistry.

[121]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[122]  S. Hemby,et al.  Methods for proteomics in neuroscience. , 2006, Progress in brain research.

[123]  Linfeng Wu,et al.  Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics , 2006, Expert review of proteomics.

[124]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[125]  Carol S. Giometti,et al.  Identification of 2D-gel proteins: A comparison of MALDI/TOF peptide mass mapping to μ LC-ESI tandem mass spectrometry , 2003, Journal of the American Society for Mass Spectrometry.

[126]  E. Bradbury,et al.  Site-specific mass tagging with stable isotopes in proteins for accurate and efficient protein identification. , 2000, Analytical chemistry.

[127]  J. Porath,et al.  Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. , 1986, Analytical biochemistry.

[128]  Vladislav A Petyuk,et al.  Spatial mapping of protein abundances in the mouse brain by voxelation integrated with high-throughput liquid chromatography-mass spectrometry. , 2007, Genome research.

[129]  F. McLafferty,et al.  Electron capture dissociation for structural characterization of multiply charged protein cations. , 2000, Analytical chemistry.

[130]  S. Grant,et al.  Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome , 2006, Journal of neurochemistry.

[131]  J. Yates,et al.  Anion and cation mixed-bed ion exchange for enhanced multidimensional separations of peptides and phosphopeptides. , 2007, Analytical chemistry.

[132]  J. Shabanowitz,et al.  Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[133]  E. Krause,et al.  Derivatization of phosphorylated peptides with S- and N-nucleophiles for enhanced ionization efficiency in matrix-assisted laser desorption/ionization mass spectrometry. , 2004, Rapid communications in mass spectrometry : RCM.

[134]  Shinsei Minoshima,et al.  Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase , 2000, Nature Genetics.

[135]  Rovshan G Sadygov,et al.  Large-scale database searching using tandem mass spectra: Looking up the answer in the back of the book , 2004, Nature Methods.

[136]  Takashi Yamauchi,et al.  Molecular constituents of the postsynaptic density fraction revealed by proteomic analysis using multidimensional liquid chromatography‐tandem mass spectrometry , 2003, Journal of neurochemistry.

[137]  Andrew Emili,et al.  De novo peptide sequencing and quantitative profiling of complex protein mixtures using mass-coded abundance tagging , 2002, Nature Biotechnology.

[138]  J. DeGnore,et al.  Fragmentation of phosphopeptides in an ion trap mass spectrometer , 1998, Journal of the American Society for Mass Spectrometry.

[139]  M. Mann,et al.  SILAC Mouse for Quantitative Proteomics Uncovers Kindlin-3 as an Essential Factor for Red Blood Cell Function , 2008, Cell.

[140]  Michelle L. Reyzer,et al.  MALDI imaging mass spectrometry: molecular snapshots of biochemical systems , 2007, Nature Methods.

[141]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[142]  R. Frank,et al.  Micropreparative separation of peptides derived from sodium dodecyl sulphate-solubilized proteins. , 1989, Journal of chromatography.

[143]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[144]  F. Mansouri,et al.  Augmentation of LTP induced by Primed–Bursts tetanic stimulation in hippocampal CA1 area of morphine dependent rats , 1997, Brain Research.

[145]  M. Mann,et al.  Higher-energy C-trap dissociation for peptide modification analysis , 2007, Nature Methods.

[146]  P. Roepstorff,et al.  Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns* , 2005, Molecular & Cellular Proteomics.

[147]  Daniel B. McClatchy,et al.  Quantitative analysis of brain nuclear phosphoproteins identifies developmentally regulated phosphorylation events. , 2008, Journal of proteome research.

[148]  Daniel B. McClatchy,et al.  Quantification of the synaptosomal proteome of the rat cerebellum during post-natal development. , 2007, Genome research.

[149]  A. Pandey,et al.  Detection of tyrosine phosphorylated peptides by precursor ion scanning quadrupole TOF mass spectrometry in positive ion mode. , 2001, Analytical chemistry.

[150]  A. Makarov,et al.  The Orbitrap: a new mass spectrometer. , 2005, Journal of mass spectrometry : JMS.

[151]  Xinning Jiang,et al.  Large‐scale phosphoproteome analysis of human liver tissue by enrichment and fractionation of phosphopeptides with strong anion exchange chromatography , 2008, Proteomics.

[152]  Steven P Gygi,et al.  Phosphoproteomic Analysis of the Developing Mouse Brain*S , 2004, Molecular & Cellular Proteomics.

[153]  Frank Fischer,et al.  Toward the Complete Membrane Proteome , 2006, Molecular & Cellular Proteomics.

[154]  Maxence Wisztorski,et al.  Molecular MALDI imaging: An emerging technology for neuroscience studies , 2008, Developmental neurobiology.

[155]  J. Yates,et al.  Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. , 2004, Analytical chemistry.

[156]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[157]  H. Ball,et al.  Novel reversible biotinylated probe for the selective enrichment of phosphorylated peptides from complex mixtures , 2008, Journal of the American Society for Mass Spectrometry.

[158]  A. McCormack,et al.  Direct Analysis of Protein Mixtures by Tandem Mass Spectrometry , 1997, Journal of protein chemistry.

[159]  P Berndt,et al.  Enrichment of low abundance proteins of Escherichia coli by hydroxyapatite chromatography , 1999, Electrophoresis.

[160]  J. Yates,et al.  Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry. , 2007, Analytical chemistry.

[161]  Antoine H P America,et al.  Comparative LC‐MS: A landscape of peaks and valleys , 2008, Proteomics.

[162]  M. Kennedy,et al.  Identification of Proteins in the Postsynaptic Density Fraction by Mass Spectrometry , 2000, The Journal of Neuroscience.

[163]  R. Jolly The ubiquitin proteasome system in Huntington's disease , 2008 .

[164]  Songping Liang,et al.  Integration of a two-phase partition method into proteomics research on rat liver plasma membrane proteins. , 2006, Journal of proteome research.

[165]  Bernd Thiede,et al.  Peptide mass fingerprinting. , 2005, Methods.

[166]  J. L. Napoli,et al.  The Nuclear Transcription Factor RARα Associates with Neuronal RNA Granules and Suppresses Translation* , 2008, Journal of Biological Chemistry.

[167]  Mark Brönstrup,et al.  Absolute quantification strategies in proteomics based on mass spectrometry , 2004, Expert review of proteomics.

[168]  K. Resing,et al.  Comparison of Label-free Methods for Quantifying Human Proteins by Shotgun Proteomics*S , 2005, Molecular & Cellular Proteomics.

[169]  M. Feany,et al.  α-Synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease , 2005, Nature Neuroscience.

[170]  F. Cross,et al.  Accurate quantitation of protein expression and site-specific phosphorylation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[171]  L J Ransone,et al.  Detection of protein-protein interactions by coimmunoprecipitation and dimerization. , 1995, Methods in enzymology.

[172]  J. Giddings Two-dimensional separations: concept and promise. , 1984, Analytical chemistry.

[173]  Christian Panse,et al.  Qualitative and Quantitative Analyses of Protein Phosphorylation in Naive and Stimulated Mouse Synaptosomal Preparations*S , 2007, Molecular & Cellular Proteomics.

[174]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[175]  J. Shabanowitz,et al.  Methods for the detection of paxillin post-translational modifications and interacting proteins by mass spectrometry. , 2005, Journal of proteome research.

[176]  M. Fountoulakis,et al.  Enrichment of low-copy-number gene products by hydrophobic interaction chromatography. , 1999, Journal of chromatography. A.

[177]  J. Chervet,et al.  Sodium dodecyl sulphate removal from tryptic digest samples for on-line capillary liquid chromatography/electrospray mass spectrometry. , 1996, Journal of mass spectrometry : JMS.

[178]  J. Yates,et al.  A model for random sampling and estimation of relative protein abundance in shotgun proteomics. , 2004, Analytical chemistry.

[179]  J. Yates,et al.  Dual Roles for Spt5 in Pre-mRNA Processing and Transcription Elongation Revealed by Identification of Spt5-Associated Proteins , 2003, Molecular and Cellular Biology.

[180]  Junmin Peng Evaluation of proteomic strategies for analyzing ubiquitinated proteins. , 2008, BMB reports.