A global circulation model of Saturn's thermosphere

We present the first 3-dimensional self-consistent calculations of the response of Saturn’s global thermosphere to different sources of external heating, giving local time and latitudinal changes of temperatures, winds and composition at equinox and solstice. Our calculations confirm the well-known finding that solar EUV heating alone is insufficient to produce Saturn’s observed low latitude thermospheric temperatures of 420 K. We therefore carry out a sensitivity study to investigate the thermosphere’s response to two additional external sources of energy, (1) auroral Joule heating and (2) empirical wave heating in the lower thermosphere. Solar EUV heating alone produces horizontal temperature variations of below 20 K, which drive horizontal winds of less than 20 m/s and negligible horizontal changes in composition. In contrast, Joule heating produces a strong dynamical response with westward winds comparable to the sound speed on Saturn. Joule heating alone, at a total rate of 9.8 TW, raises polar temperatures to around 1200 K, but values equatorward of 30 ◦ latitude, where observations were made, remain below 200 K due to inefficient meridional energy transport in a fast rotating atmosphere. The primarily zonal wind flow driven by strong Coriolis forces implies that energy from high latitudes is transported equatorward mainly by vertical winds through adiabatic processes, and an additional 0.29–0.44 mW/m 2 thermal energy are needed at low latitudes to obtain the observed temperature values. Strong upwelling increases the H 2 abundances at high latitudes, which in turn affects the H + densities. Downwelling at low latitudes helps increase atomic hydrogen abundances there.

[1]  S. Miller,et al.  Ion winds in Saturn's southern auroral/polar region , 2004 .

[2]  Donald M. Hunten,et al.  Study of planetary atmospheres by absorptive occultations , 1990 .

[3]  G. F. Lindal,et al.  The atmosphere of Neptune : an analysis of radio occultation data acquired with Voyager 2 , 1992 .

[4]  Gary J. Rottman,et al.  The SOLAR2000 empirical solar irradiance model and forecast tool , 2000 .

[5]  G. F. Lindal,et al.  Structure of the Ionosphere and Atmosphere of Saturn from Pioneer 11 Saturn Radio Occultation , 1980 .

[6]  M. Mendillo,et al.  Modeling of global variations and ring shadowing in Saturn's ionosphere , 2004 .

[7]  A. Aylward,et al.  Polar heating in Saturn's thermosphere , 2005 .

[8]  G. F. Lindal,et al.  The atmosphere of Saturn - an analysis of the Voyager radio occultation measurements , 1985 .

[9]  S. Miller,et al.  The H3+ Latitudinal Profile of Saturn , 1999 .

[10]  Thomas E. Cravens,et al.  Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere , 1983 .

[11]  S. Miller,et al.  Jupiter's thermosphere and ionosphere , 2004 .

[12]  I. C. F. M. odarg The Application of General Circulation Models to the Atmospheres of Terrestrial-Type Moons of the Giant Planets , 2001 .

[13]  R. Vervack,et al.  Structure of Jupiter's upper atmosphere: Predictions for Galileo , 1996 .

[14]  J. McConnell,et al.  Saturn's upper atmosphere from the Voyager 2 Euv solar and stellar occultations , 1983 .

[15]  M. Allen,et al.  Photochemistry of Saturn's Atmosphere: II. Effects of an Influx of External Oxygen , 2000 .

[16]  T. Fuller‐Rowell,et al.  A Three-Dimensional Time-Dependent Global Model of the Thermosphere , 1980 .

[17]  M. Dobrijevic,et al.  New photochemical model of Saturn’s atmosphere , 2000 .

[18]  Helmut Feuchtgruber,et al.  Photochemistry of Saturn's Atmosphere: I. Hydrocarbon Chemistry and Comparisons with ISO Observations , 2000 .

[19]  N. Achilleos,et al.  On the dynamics of the jovian ionosphere and thermosphere.: IV. Ion–neutral coupling , 2005 .

[20]  D. Strobel,et al.  Heating of Jupiter's Thermosphere by Dissipation of Gravity Waves Due to Molecular Viscosity and Heat Conduction , 1998 .

[21]  P. Bernhardt Three‐dimensional, time‐dependent modeling of neutral gas diffusion in a nonuniform, chemically reactive atmosphere , 1979 .

[22]  H. Rishbeth,et al.  Vertical circulation and thermospheric composition: a modelling study , 1999 .

[23]  P. Gierasch,et al.  Waves in the Jovian upper atmosphere , 1974 .

[24]  J. H. Waite,et al.  Jupiter Thermospheric General Circulation Model (JTGCM): Global structure and dynamics driven by auroral and Joule heating , 2005 .

[25]  I. Mueller-Wodarg,et al.  Effects of ring shadowing on the detection of electrostatic discharges at Saturn , 2005 .

[26]  I. Müller‐Wodarg,et al.  The effect of dynamics on the composition of Titan's upper atmosphere , 2002 .

[27]  S. F. Bass,et al.  The effects of external material on the chemistry and structure of Saturn's ionosphere , 2000 .

[28]  Roger V. Yelle,et al.  Gravity Waves in Jupiter's Thermosphere , 1997, Science.

[29]  D. Grodent,et al.  Morphological differences between Saturn's ultraviolet aurorae and those of Earth and Jupiter , 2005, Nature.

[30]  S. E. Persson,et al.  Structure of Saturn's mesosphere from the 28 Sgr occultations , 1997 .

[31]  Emma J. Bunce,et al.  Saturn's Polar Ionospheric Flows and Their Relation to the Main Auroral Oval , 2022 .

[32]  Jonathan Tennyson,et al.  JIM: A time‐dependent, three‐dimensional model of Jupiter's thermosphere and ionosphere , 1998 .

[33]  W. Kent Tobiska,et al.  SOLAR2000 irradiances for climate change research, aeronomy and space system engineering , 2004 .

[34]  Glenn S. Orton,et al.  Four micron high-resolution spectra of Jupiter in the North Equatorial Belt: H3(+) emissions and the C-12/C-13 ratio , 1994 .

[35]  R. Dickinson,et al.  VERTICAL MOTION FIELD IN THE MIDDLE THERMOSPHERE FROM SATELLITE DRAG DENSITIES , 1968 .

[36]  M. Mendillo,et al.  Ionospheric contribution to Saturn's inner plasmasphere , 2005 .

[37]  T. Fuller‐Rowell,et al.  Simulations of the upper atmospheres of the terrestrial planets , 2013 .

[38]  T. Cravens,et al.  Jovian X‐ray emission from solar X‐ray scattering , 2000 .

[39]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[40]  J. McConnell,et al.  Voyager electron density measurements on Saturn: Analysis with a time dependent ionospheric model , 1996 .

[41]  D. Hunten,et al.  Soft electrons as a possible heat source for Jupiter's thermosphere , 1977 .

[42]  J. Lecacheux,et al.  Temporal behavior of cloud morphologies and motions in Saturn's atmosphere , 1993 .

[43]  Emma J. Bunce,et al.  A simple quantitative model of plasma flows and currents in Saturn's polar ionosphere , 2004 .

[44]  S. Atreya,et al.  Voyager ultraviolet stellar occultation measurements of the composition and thermal profiles of the Saturnian upper atmosphere , 1982 .

[45]  Chandra Observation of an X-Ray Flare at Saturn: Evidence of Direct Solar Control on Saturn’s Disk X-Ray Emissions , 2005, astro-ph/0504110.

[46]  R. Elsner,et al.  Solar control on Jupiter's equatorial X‐ray emissions: 26–29 November 2003 XMM‐Newton observation , 2005, astro-ph/0504670.

[47]  D. Strobel,et al.  On the Temperature of the Jovian Thermosphere , 1973 .

[48]  Edward J. Smith,et al.  A model of Saturn's magnetic field based on all available data , 1990 .

[49]  A. Aylward,et al.  Magnetospheric energy inputs into the upper atmospheres of the giant planets , 2005 .

[50]  P. Drossart,et al.  Equatorial X-ray Emissions: Implications for Jupiter's High Exospheric Temperatures , 1997, Science.

[51]  R. Roble,et al.  Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices , 1999 .

[52]  Raymond G. Roble,et al.  A coupled thermosphere/ionosphere general circulation model , 1988 .

[53]  R. Dickinson,et al.  A Numerical Model for the Dynamics and Composition of the Venusian Thermosphere , 1975 .

[54]  G. Schubert,et al.  Heating of Jupiter's thermosphere by the dissipation of upward propagating acoustic waves , 2003 .

[55]  A. Aylward,et al.  On the global distribution of neutral gases in Titan , 2003 .

[56]  A. Aylward,et al.  The thermosphere of Titan simulated by a global three‐dimensional time‐dependent model , 2000 .

[57]  G. Millward,et al.  On the Dynamics of the Jovian Ionosphere and Thermosphere: II. The Measurement of H3+ Vibrational Temperature, Column Density, and Total Emission , 2002 .