Electrical and thermal conductivities of high-temperature CO2–CF3I mixture and transient conductance of residual arc during its extinction process

Fundamental properties of CO2 mixed with CF3I were investigated in terms of (i) electrical and thermal conductivities at temperatures up to 30 000 K, (ii) a decay process of an arc conductance around a current zero under a free transient-recovery-voltage condition and (iii) an arc extinguishing capability in a thermal re-ignition region. The electrical conductivity at temperatures below 10 000 K proved to increase gradually with the admixture amount of CF3I. The thermal conductivity, in particular around 7000 K, was found to have marked dependence on the CF3I concentration. The result for the decay process of the residual-arc conductance under the free transient-recovery-voltage situation showed that the arc conductance attenuated more rapidly for CO2 mixed with CF3I at concentrations above 0.9 than for pure CO2. The mixture gas having the same concentrations was also revealed to cause the arc to be extinguished under a higher transient-recovery voltage than pure CO2.

[1]  Takuya Watanabe,et al.  Equilibrium Composition of High-Temperature Argon Contaminated with Fly-Ash Metals in Consideration of Phase Transformation and its Thermodynamic and Transport Properties , 2003 .

[2]  Alain Gleizes,et al.  Decay of wall stabilized arcs in SF6‐N2 mixtures , 1987 .

[3]  J L Hernández-Ávila,et al.  Electron transport and swarm parameters in CO2 and its mixtures with SF6 , 2002 .

[4]  H. Toyota,et al.  Measurement of sparkover voltage and time lag characteristics in CF3I–N2 and CF3I– air gas mixtures by using steep‐front square voltage , 2006 .

[5]  Adolf A. Abrahamson,et al.  Born-Mayer-Type Interatomic Potential for Neutral Ground-State Atoms with Z=2 to Z=105 , 1969 .

[6]  S. Vacquié,et al.  The influence of copper vapour on the transport coefficients in a nitrogen arc plasma , 1980 .

[7]  David S. Green,et al.  Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure SF6 , 1997 .

[8]  P. Checchin,et al.  Study of the curvature of the electrical arc in low voltage breaking devices: influence of the external magnetic field , 2005 .

[9]  Xingwen Li,et al.  A comparison of the effects of different mixture plasma properties on arc motion , 2007 .

[10]  Joseph Yan,et al.  Experimental and theoretical investigation of an enclosed free burning arc in SF6 , 2000 .

[11]  J. Yos,et al.  TRANSPORT PROPERTIES OF NITROGEN, HYDROGEN, OXYGEN, AND AIR TO 30,000 K , 1963 .

[12]  N. Hayakawa,et al.  Breakdown Characteristics of N2O Gas Mixtures for Quasiuniform Electric Field under Lightning Impulse Voltage , 2007, IEEE Transactions on Dielectrics and Electrical Insulation.

[13]  島内 みどり,et al.  G. Herzberg: Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules, D. Van Nostrand, Prinston 1966, 745頁, 16.5×24cm, 8,000円. , 1968 .

[15]  Toshiro Matsumura,et al.  Arc behavior in rotary-arc type of load-break switch and its current-interrupting capability for different environmentally benign gases and electrode materials , 2004 .

[16]  Yi Wu,et al.  Simulation Study of the Influence of Wall Ablation on Arc Behavior in a Low-Voltage Circuit Breaker , 2009, IEEE Transactions on Plasma Science.

[17]  Y. Yokomizu,et al.  Transient behaviour of axial temperature distribution in post-arc channel after current zero around nozzle throat in flat-type SF6 gas-blast quenching chamber , 1995 .

[18]  A. Gleizes,et al.  Calculation of the interruption capability of SF/sub 6/-CF/sub 4/ and SF/sub 6/-C/sub 2/F/sub 6/ mixtures. I. Plasma properties , 1996 .

[19]  A. Murphy Transport Coefficients of Hydrogen and Argon–Hydrogen Plasmas , 2000 .

[20]  Y. Yokomizu,et al.  The opening process of thermal plasma contacts in a post-arc channel after current zero in a flat-type gas-blast quenching chamber , 1997 .

[22]  Louis Monchick,et al.  Collision Integrals for the Exponential Repulsive Potential , 1959 .

[23]  Tadahiro Sakuta,et al.  Investigation on plasma-quenching efficiency of various gases using the inductively coupled thermal plasma technique: effect of various gas injection on Ar thermal ICP , 2002 .

[24]  J. M. Calm,et al.  Refrigerant Data Summary , 2001 .

[25]  L. S. Frost,et al.  Composition and transport properties of SF 6 and their use in a simplified enthalpy flow arc model , 1971 .

[26]  Y. Yokomizu,et al.  A novel approach to AC air arc interruption phenomena viewed from the electron density at current zero , 1989 .

[27]  R. Dommerque,et al.  Investigation of an SF6-selfblast circuit breaker , 2006 .

[28]  Sydney Geltman,et al.  Single- and Double-Quantum Photodetachment of Negative Ions , 1967 .

[29]  康規 田中,et al.  温度300-30,000K,圧力0.1-10MPaにおけるCO2の熱力学·輸送特性とO2およびH2混入の影響 , 2006 .

[30]  R. Garzon The effects of SF 6 - N 2 mixture upon the recovery voltage capability of a synchronous interrupter , 1976 .

[31]  M. Bouaziz,et al.  An experimental and theoretical study of the influence of copper vapour on a arc plasma at atmospheric pressure , 1998 .

[32]  F. Barhorn,et al.  Berechnung der inneren Zustandssummen einiger zweiatomiger Moleküle bei höheren Temperaturen , 1959 .

[33]  D. Rapp,et al.  CHARGE EXCHANGE BETWEEN GASEOUS IONS AND ATOMS. , 1962 .

[34]  Alain Gleizes,et al.  Calculation of the interruption capability of SF/sub 6/-CF/sub 4/ and SF/sub 6/-C/sub 2/F/sub 6/ mixtures. II. Arc decay modeling , 1996 .

[35]  Fei Yang,et al.  Numerical analysis of arc plasma behaviour during contact opening process in low-voltage switching device , 2007 .

[36]  J. Bearden,et al.  Atomic energy levels , 1965 .

[37]  Alain Gleizes,et al.  Thermodynamic properties and transport coefficients in SF6-Cu mixtures at temperatures of 300-30000 K and pressures of 0.1-1 MPa , 1994 .

[38]  Anthony B. Murphy,et al.  Thermal plasmas in gas mixtures , 2001 .

[39]  Joseph D. Yan,et al.  A comparison of three radiation models for the calculation of nozzle arcs , 2004 .

[40]  L. S. Frost,et al.  Interruption Capability of Gases and Gas Mixtures in a Puffer-Type Interrupter , 1980, IEEE Transactions on Plasma Science.

[41]  P. André Composition and thermodynamic properties of ablated vapours of PMMA, PA6-6, PETP, POM and PE , 1996 .

[42]  Transport coefficients in arc plasma of SF6–N2 mixtures , 1983 .

[43]  S. Okabe,et al.  Thermodynamic and transport properties of CO2, CO2–O2, and CO2–H2 mixtures at temperatures of 300 to 30,000 K and pressures of 0.1 to 10 MPa , 2008 .