Synthesis and Characterization of a Neutral Tricoordinate Organoboron Isoelectronic with Amines

Carefully chosen carbon substituents stabilize a boron oxidation state that bears an extra electron pair. Amines and boranes are the archetypical Lewis bases and acids, respectively. The former can readily undergo one-electron oxidation to give radical cations, whereas the latter are easily reduced to afford radical anions. Here, we report the synthesis of a neutral tricoordinate boron derivative, which acts as a Lewis base and undergoes one-electron oxidation into the corresponding radical cation. These compounds can be regarded as the parent borylene (H-B:) and borinylium (H-B+.), respectively, stabilized by two cyclic (alkyl)(amino)carbenes. Ab initio calculations show that the highest occupied molecular orbital of the borane as well as the singly occupied molecular orbital of the radical cation are essentially a pair and a single electron, respectively, in the p(π) orbital of boron.

[1]  T. Kupfer,et al.  Trapping the elusive parent borylene. , 2011, Angewandte Chemie.

[2]  Zhenyang Lin,et al.  Mechanisms of Reactions of a Lithium Boryl with Organohalides , 2011 .

[3]  S. Aldridge,et al.  Coordination chemistry of group 13 monohalides , 2011 .

[4]  G. Bertrand,et al.  Stable singlet carbenes as mimics for transition metal centers. , 2011, Chemical science.

[5]  M. Robert,et al.  Generation and reactions of an unsubstituted N-heterocyclic carbene boryl anion. , 2010, Angewandte Chemie.

[6]  G. Bertrand,et al.  Stable cyclic carbenes and related species beyond diaminocarbenes. , 2010, Angewandte Chemie.

[7]  M. Yamashita,et al.  Boryl Anion: Syntheses and Properties of Novel Borylmetals , 2010 .

[8]  P. Power,et al.  Pi-bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. , 2010, Chemical reviews.

[9]  G. Frenking,et al.  Isolation of crystalline carbene-stabilized P(2)-radical cations and P(2)-dications. , 2010, Nature chemistry.

[10]  K. Nozaki Chemistry: Not just any old anion , 2010, Nature.

[11]  Rian D. Dewhurst,et al.  Electron-precise coordination modes of boron-centered ligands. , 2010, Chemical reviews.

[12]  T. Kupfer,et al.  Synthesis and structure of a carbene-stabilized pi-boryl anion. , 2010, Angewandte Chemie.

[13]  J. Walton,et al.  EPR studies of the generation, structure, and reactivity of n-heterocyclic carbene borane radicals. , 2010, Journal of the American Chemical Society.

[14]  Yuzhong Wang,et al.  Unique homonuclear multiple bonding in main group compounds. , 2009, Chemical communications.

[15]  F. Gabbaï,et al.  A Borenium Cation Stabilized by an N-Heterocyclic Carbene Ligand , 2009 .

[16]  G. Frenking,et al.  First and second proton affinities of carbon bases. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[17]  F. Hahn,et al.  Heterocyclic carbenes: synthesis and coordination chemistry. , 2008, Angewandte Chemie.

[18]  H. Schaefer,et al.  Planar, twisted, and trans-bent: conformational flexibility of neutral diborenes. , 2008, Journal of the American Chemical Society.

[19]  Hans‐Jörg Himmel,et al.  Synthesis and structural characterization of a stable dimeric boron(II) dication. , 2007, Angewandte Chemie.

[20]  H. Schaefer,et al.  A stable, neutral diborene containing a B=B double bond. , 2007, Journal of the American Chemical Society.

[21]  G. Bertrand,et al.  Facile Splitting of Hydrogen and Ammonia by Nucleophilic Activation at a Single Carbon Center , 2007, Science.

[22]  H. Braunschweig Lithiumboryl--a synthon for a nucleophilic boryl anion. , 2007, Angewandte Chemie.

[23]  M. Yamashita,et al.  Boryllithium: Isolation, Characterization, and Reactivity as a Boryl Anion , 2006, Science.

[24]  T. Marder Boron Goes On the Attack , 2006, Science.

[25]  G. Bertrand,et al.  CO fixation to stable acyclic and cyclic alkyl amino carbenes: stable amino ketenes with a small HOMO-LUMO gap. , 2006, Angewandte Chemie.

[26]  H. Bettinger Phenylborylene: direct spectroscopic characterization in inert gas matrices. , 2006, Journal of the American Chemical Society.

[27]  G. Bertrand,et al.  Stable cyclic (alkyl)(amino)carbenes as rigid or flexible, bulky, electron-rich ligands for transition-metal catalysts: a quaternary carbon atom makes the difference. , 2005, Angewandte Chemie.

[28]  W. Piers,et al.  Borinium, borenium, and boronium ions: synthesis, reactivity, and applications. , 2005, Angewandte Chemie.

[29]  Russell N. Grimes,et al.  Boron Clusters Come of Age. , 2004 .

[30]  H. Braunschweig,et al.  Synthesis and Structure of the First Terminal Borylene Complexes. , 1998, Angewandte Chemie.

[31]  H. Schmidbaur,et al.  Cyclic and Bicyclic Poly(phosphane)borane Cations , 1997 .

[32]  L. Andrews,et al.  Reaction of halogens with laser-ablated boron: infrared spectra of BXn (X = F, Cl, Br, I; n = 1, 2, 3) in solid argon , 1993 .

[33]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[34]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[35]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[36]  P. Power,et al.  Isolation and x-ray crystal structure of the boron methylidenide ion [Mes2BCH2]- (Mes = 2,4,6-Me3C6H2): a boron-carbon double bonded alkene analog , 1987 .

[37]  P. Power,et al.  First structural characterization of a boron-centered radical: x-ray crystal structure of [Li(12-crown-4)2]+ [BMes3]-.bul. , 1986 .

[38]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[39]  I. Csizmadia,et al.  The determination of electronic ground and singlet state wavefunctions of BH , 1974 .