On the assessment of random and quasi-random point sets
暂无分享,去创建一个
[1] Brian D. Ripley,et al. Stochastic Simulation , 2005 .
[2] H. Niederreiter. Low-discrepancy and low-dispersion sequences , 1988 .
[3] Compagner. Operational conditions for random-number generation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[4] Pierre L'Ecuyer,et al. A random number generator based on the combination of four LCGs , 1997 .
[5] Pierre L'Ecuyer,et al. Implementing a random number package with splitting facilities , 1991, TOMS.
[6] Harald Niederreiter,et al. New Developments in Uniform Pseudorandom Number and Vector Generation , 1995 .
[7] Hannes Leeb,et al. Weak limits for the diaphony , 1998 .
[8] P. Hellekalek. General discrepancy estimates II: the Haar function system , 1994 .
[9] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[10] Makoto Matsumoto,et al. Twisted GFSR generators II , 1994, TOMC.
[11] Pierre L'Ecuyer,et al. Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..
[12] Jürgen Lehn,et al. A non-linear congruential pseudo random number generator , 1986 .
[13] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[14] K Entacher,et al. Linear Congruential Generators for Parallel Monte Carlo: the Leap-Frog Case. , 1998, Monte Carlo Methods Appl..
[15] Harald Niederreiter,et al. The weighted spectral test: diaphony , 1998, TOMC.
[16] Pierre L'Ecuyer,et al. Testing random number generators , 1992, WSC '92.
[17] U. Dieter,et al. How to calculate shortest vectors in a lattice , 1975 .
[18] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[19] P. Hellekalek. Good random number generators are (not so) easy to find , 1998 .
[20] Lauwerens Kuipers,et al. Uniform distribution of sequences , 1974 .
[21] K. Fang,et al. Application of Threshold-Accepting to the Evaluation of the Discrepancy of a Set of Points , 1997 .
[22] J. Eichenauer-Herrmann. Statistical independence of a new class of inversive congruential pseudorandom numbers , 1993 .
[23] Shu Tezuka,et al. Walsh-spectral test for GFSR pseudorandom numbers , 1987, CACM.
[24] A. De Matteis,et al. Long-range correlations in linear and nonlinear random number generators , 1990, Parallel Comput..
[25] Peter Hellekalek,et al. Regularities in the distribution of special sequences , 1984 .
[26] Harald Niederreiter,et al. Pseudorandom vector generation by the inversive method , 1994, TOMC.
[27] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .
[28] William F. Eddy. Random number generators for parallel processors , 1990 .
[29] H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .
[30] Alan Genz,et al. Testing multidimensional integration routines , 1984 .
[31] Peter Hellekalek,et al. General discrepancy estimates III: The Erdös-Turán-Koksma inequality for the Haar function system , 1995 .
[32] Shu Tezuka,et al. Uniform Random Numbers , 1995 .
[33] Makoto Matsumoto,et al. Twisted GFSR generators , 1992, TOMC.
[34] J. Kiefer. On large deviations of the empiric D. F. of vector chance variables and a law of the iterated logarithm. , 1961 .
[35] Peter Hellekalek,et al. On correlation analysis of pseudorandom numbers , 1998 .
[36] S. Tezuka. Uniform Random Numbers: Theory and Practice , 1995 .
[37] Pierre L'Ecuyer,et al. A search for good multiple recursive random number generators , 1993, TOMC.
[38] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[39] Fred J. Hickernell,et al. A generalized discrepancy and quadrature error bound , 1998, Math. Comput..
[40] Alan Genz,et al. A Package for Testing Multiple Integration Subroutines , 1987 .
[41] Stuart L. Anderson,et al. Random Number Generators on Vector Supercomputers and Other Advanced Architectures , 1990, SIAM Rev..
[42] Stefan Heinrich,et al. Efficient algorithms for computing the L2-discrepancy , 1996, Math. Comput..
[43] K. Entacher. Quasi-Monte Carlo methods for numerical integration of multivariate Haar series II , 1997 .
[44] Harald Niederreiter,et al. On a new class of pseudorandom numbers for simulation methods , 1994 .
[45] Terje O. Espelid,et al. Numerical Integration: Recent Developments, Software and Applications. , 1993 .
[46] Karl Entacher,et al. Bad subsequences of well-known linear congruential pseudorandom number generators , 1998, TOMC.
[47] Clemens Amstler. Some remarks on a discrepancy in compact groups , 1997 .
[48] Harald Niederreiter,et al. Implementation and tests of low-discrepancy sequences , 1992, TOMC.
[49] Stefan Wegenkittl,et al. Inversive and linear congruential pseudorandom number generators in empirical tests , 1997, TOMC.
[50] Harald Niederreiter,et al. Bounds for exponential sums and their applications to pseudorandom numbers , 1994 .
[51] Pierre L'Ecuyer,et al. An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..
[52] Karin Frank,et al. Computing Discrepancies Related to Spaces of Smooth Periodic Functions , 1998 .
[53] Pierre L'Ecuyer,et al. Tables of linear congruential generators of different sizes and good lattice structure , 1999, Math. Comput..
[54] N. M. Maclaren,et al. A limit on the usable length of a pseudorandom sequence , 1992 .
[55] Jeffrey J. Holt,et al. The Beurling-Selberg extremal functions for a ball in Euclidean space , 1996 .
[56] Harald Niederreiter,et al. New methods for pseudorandom numbers and pseudorandom vector generation , 1992, WSC '92.
[57] Gerhard Larcher,et al. Quasi-Monte Carlo methods for the numerical integration of multivariate walsh series , 1996 .
[58] Karin Frank,et al. Computing Discrepancies of Smolyak Quadrature Rules , 1996, J. Complex..
[59] Pierre L'Ecuyer,et al. Random Number Generators and Empirical Tests , 1998 .
[60] Clemens Amstler. Discrepancy operators and numerical integration on compact groups , 1995 .
[61] Chung-Kwong Yuen. Testing Random Number Generators by Walsh Transform , 1977, IEEE Trans. Computers.
[62] Stefan Wegenkittl,et al. A survey of quadratic and inversive congruential pseudorandom numbers , 1998 .
[63] H. Niederreiter. Pseudo-random numbers and optimal coefficients☆ , 1977 .
[64] Jiri Hoogland,et al. Gaussian limits for discrepancies I. Asymptotic results , 1997, physics/9708014.
[65] R. Kleiss,et al. Gaussian limits for discrepancies , 1998 .
[66] O. Strauch. $L^2$ discrepancy , 1994 .
[67] Pierre L'Ecuyer,et al. Combined Multiple Recursive Random Number Generators , 1995, Oper. Res..
[68] Gerhard Larcher,et al. On the numerical integration of Walsh series by number-theoretic methods , 1994 .
[69] B. Golubov,et al. Walsh Series and Transforms , 1991 .
[70] Ronald L. Wasserstein,et al. Monte Carlo: Concepts, Algorithms, and Applications , 1997 .
[71] F. James,et al. Multidimensional sampling for simulation and integration: measures, discrepancies, and quasi-random numbers , 1996, hep-ph/9606309.
[72] R. R. Coveyou,et al. Fourier Analysis of Uniform Random Number Generators , 1967, JACM.
[73] Wolfgang Ch. Schmid,et al. Representation of functions as Walsh series to different bases and an application to the numerical integration of high-dimensional Walsh series , 1994 .
[74] K. Schmidt. Eine Diskrepanz für Maßfolgen auf lokalkompakten Gruppen , 1971 .
[75] Takuji Nishimura,et al. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.
[76] Peter Hellekalek. Inversive pseudorandom number generators: concepts, results and links , 1995, WSC '95.
[77] Peter Hellekalek,et al. General discrepancy estimates: the Walsh function system , 1994 .
[78] G. S. Fishman,et al. A Statistical Evaluation of Multiplicative Congruential Random Number Generators with Modulus 231 — 1 , 1982 .
[79] Vsevolod F. Lev. On two versions ofL2-discrepancy and geometrical interpretation of diaphony , 1995 .