On the assessment of random and quasi-random point sets

The Monte Carlo and the quasi-Monte Carlo method are two of the most important techniques to solve multidimensional problems. In both cases, we employ deterministic algorithms to generate finite point sets in high dimensions. The quality of the equidistribution of these point sets may have a decisive influence on our numerical results. In this contribution, we will discuss the main concepts to assess equidistribution. In particular, we will present a new interpretation of the well-known spectral test.

[1]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[2]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[3]  Compagner Operational conditions for random-number generation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Pierre L'Ecuyer,et al.  A random number generator based on the combination of four LCGs , 1997 .

[5]  Pierre L'Ecuyer,et al.  Implementing a random number package with splitting facilities , 1991, TOMS.

[6]  Harald Niederreiter,et al.  New Developments in Uniform Pseudorandom Number and Vector Generation , 1995 .

[7]  Hannes Leeb,et al.  Weak limits for the diaphony , 1998 .

[8]  P. Hellekalek General discrepancy estimates II: the Haar function system , 1994 .

[9]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[10]  Makoto Matsumoto,et al.  Twisted GFSR generators II , 1994, TOMC.

[11]  Pierre L'Ecuyer,et al.  Bad Lattice Structures for Vectors of Nonsuccessive Values Produced by Some Linear Recurrences , 1997, INFORMS J. Comput..

[12]  Jürgen Lehn,et al.  A non-linear congruential pseudo random number generator , 1986 .

[13]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[14]  K Entacher,et al.  Linear Congruential Generators for Parallel Monte Carlo: the Leap-Frog Case. , 1998, Monte Carlo Methods Appl..

[15]  Harald Niederreiter,et al.  The weighted spectral test: diaphony , 1998, TOMC.

[16]  Pierre L'Ecuyer,et al.  Testing random number generators , 1992, WSC '92.

[17]  U. Dieter,et al.  How to calculate shortest vectors in a lattice , 1975 .

[18]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[19]  P. Hellekalek Good random number generators are (not so) easy to find , 1998 .

[20]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[21]  K. Fang,et al.  Application of Threshold-Accepting to the Evaluation of the Discrepancy of a Set of Points , 1997 .

[22]  J. Eichenauer-Herrmann Statistical independence of a new class of inversive congruential pseudorandom numbers , 1993 .

[23]  Shu Tezuka,et al.  Walsh-spectral test for GFSR pseudorandom numbers , 1987, CACM.

[24]  A. De Matteis,et al.  Long-range correlations in linear and nonlinear random number generators , 1990, Parallel Comput..

[25]  Peter Hellekalek,et al.  Regularities in the distribution of special sequences , 1984 .

[26]  Harald Niederreiter,et al.  Pseudorandom vector generation by the inversive method , 1994, TOMC.

[27]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .

[28]  William F. Eddy Random number generators for parallel processors , 1990 .

[29]  H. Niederreiter Quasi-Monte Carlo methods and pseudo-random numbers , 1978 .

[30]  Alan Genz,et al.  Testing multidimensional integration routines , 1984 .

[31]  Peter Hellekalek,et al.  General discrepancy estimates III: The Erdös-Turán-Koksma inequality for the Haar function system , 1995 .

[32]  Shu Tezuka,et al.  Uniform Random Numbers , 1995 .

[33]  Makoto Matsumoto,et al.  Twisted GFSR generators , 1992, TOMC.

[34]  J. Kiefer On large deviations of the empiric D. F. of vector chance variables and a law of the iterated logarithm. , 1961 .

[35]  Peter Hellekalek,et al.  On correlation analysis of pseudorandom numbers , 1998 .

[36]  S. Tezuka Uniform Random Numbers: Theory and Practice , 1995 .

[37]  Pierre L'Ecuyer,et al.  A search for good multiple recursive random number generators , 1993, TOMC.

[38]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[39]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[40]  Alan Genz,et al.  A Package for Testing Multiple Integration Subroutines , 1987 .

[41]  Stuart L. Anderson,et al.  Random Number Generators on Vector Supercomputers and Other Advanced Architectures , 1990, SIAM Rev..

[42]  Stefan Heinrich,et al.  Efficient algorithms for computing the L2-discrepancy , 1996, Math. Comput..

[43]  K. Entacher Quasi-Monte Carlo methods for numerical integration of multivariate Haar series II , 1997 .

[44]  Harald Niederreiter,et al.  On a new class of pseudorandom numbers for simulation methods , 1994 .

[45]  Terje O. Espelid,et al.  Numerical Integration: Recent Developments, Software and Applications. , 1993 .

[46]  Karl Entacher,et al.  Bad subsequences of well-known linear congruential pseudorandom number generators , 1998, TOMC.

[47]  Clemens Amstler Some remarks on a discrepancy in compact groups , 1997 .

[48]  Harald Niederreiter,et al.  Implementation and tests of low-discrepancy sequences , 1992, TOMC.

[49]  Stefan Wegenkittl,et al.  Inversive and linear congruential pseudorandom number generators in empirical tests , 1997, TOMC.

[50]  Harald Niederreiter,et al.  Bounds for exponential sums and their applications to pseudorandom numbers , 1994 .

[51]  Pierre L'Ecuyer,et al.  An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..

[52]  Karin Frank,et al.  Computing Discrepancies Related to Spaces of Smooth Periodic Functions , 1998 .

[53]  Pierre L'Ecuyer,et al.  Tables of linear congruential generators of different sizes and good lattice structure , 1999, Math. Comput..

[54]  N. M. Maclaren,et al.  A limit on the usable length of a pseudorandom sequence , 1992 .

[55]  Jeffrey J. Holt,et al.  The Beurling-Selberg extremal functions for a ball in Euclidean space , 1996 .

[56]  Harald Niederreiter,et al.  New methods for pseudorandom numbers and pseudorandom vector generation , 1992, WSC '92.

[57]  Gerhard Larcher,et al.  Quasi-Monte Carlo methods for the numerical integration of multivariate walsh series , 1996 .

[58]  Karin Frank,et al.  Computing Discrepancies of Smolyak Quadrature Rules , 1996, J. Complex..

[59]  Pierre L'Ecuyer,et al.  Random Number Generators and Empirical Tests , 1998 .

[60]  Clemens Amstler Discrepancy operators and numerical integration on compact groups , 1995 .

[61]  Chung-Kwong Yuen Testing Random Number Generators by Walsh Transform , 1977, IEEE Trans. Computers.

[62]  Stefan Wegenkittl,et al.  A survey of quadratic and inversive congruential pseudorandom numbers , 1998 .

[63]  H. Niederreiter Pseudo-random numbers and optimal coefficients☆ , 1977 .

[64]  Jiri Hoogland,et al.  Gaussian limits for discrepancies I. Asymptotic results , 1997, physics/9708014.

[65]  R. Kleiss,et al.  Gaussian limits for discrepancies , 1998 .

[66]  O. Strauch $L^2$ discrepancy , 1994 .

[67]  Pierre L'Ecuyer,et al.  Combined Multiple Recursive Random Number Generators , 1995, Oper. Res..

[68]  Gerhard Larcher,et al.  On the numerical integration of Walsh series by number-theoretic methods , 1994 .

[69]  B. Golubov,et al.  Walsh Series and Transforms , 1991 .

[70]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[71]  F. James,et al.  Multidimensional sampling for simulation and integration: measures, discrepancies, and quasi-random numbers , 1996, hep-ph/9606309.

[72]  R. R. Coveyou,et al.  Fourier Analysis of Uniform Random Number Generators , 1967, JACM.

[73]  Wolfgang Ch. Schmid,et al.  Representation of functions as Walsh series to different bases and an application to the numerical integration of high-dimensional Walsh series , 1994 .

[74]  K. Schmidt Eine Diskrepanz für Maßfolgen auf lokalkompakten Gruppen , 1971 .

[75]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[76]  Peter Hellekalek Inversive pseudorandom number generators: concepts, results and links , 1995, WSC '95.

[77]  Peter Hellekalek,et al.  General discrepancy estimates: the Walsh function system , 1994 .

[78]  G. S. Fishman,et al.  A Statistical Evaluation of Multiplicative Congruential Random Number Generators with Modulus 231 — 1 , 1982 .

[79]  Vsevolod F. Lev On two versions ofL2-discrepancy and geometrical interpretation of diaphony , 1995 .