Swept-Source Optical Coherence Tomography

In the two decades since optical coherence tomography (OCT) was first described (Huang et al. 1991), this technology has played essential roles in ophthalmology as well as other branches of medicine. The technology has been adapted to produce noninvasive, high-resolution images of both the anterior segment (cornea and structures at the angles) and posterior pole (retina, choroid, sclera, and optic disc).

[1]  Gangjun Liu,et al.  Postprocessing algorithms to minimize fixed-pattern artifact and reduce trigger jitter in swept source optical coherence tomography. , 2015, Optics express.

[2]  G. Cheung,et al.  Comparison of spectral domain and swept-source optical coherence tomography in pathological myopia , 2014, Eye.

[3]  Joachim Hornegger,et al.  En face imaging of the choroid in polypoidal choroidal vasculopathy using swept-source optical coherence tomography. , 2014, American journal of ophthalmology.

[4]  T. Lim,et al.  A novel classification of the vascular patterns of polypoidal choroidal vasculopathy and its relation to clinical outcomes , 2014, British Journal of Ophthalmology.

[5]  Danjie Li,et al.  Posterior precortical vitreous pockets and connecting channels in children on swept-source optical coherence tomography. , 2014, Investigative ophthalmology & visual science.

[6]  S. Sadda,et al.  Diurnal variation of choroidal thickness in normal, healthy subjects measured by spectral domain optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[7]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[8]  Christophe Chiquet,et al.  Biometric evaluation of anterior chamber changes after physiologic pupil dilation using Pentacam and anterior segment optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[9]  Eric M. Moult,et al.  Ultrahigh-speed swept-source OCT angiography in exudative AMD. , 2014, Ophthalmic surgery, lasers & imaging retina.

[10]  M. Yuzawa,et al.  Choroidal thickness measurement by enhanced depth imaging and swept-source optical coherence tomography in central serous chorioretinopathy , 2014, BMC Ophthalmology.

[11]  Y. Mitamura,et al.  Swept-Source Optical Coherence Tomographic Findings of Choroidal Osteoma , 2014, Case Reports in Ophthalmology.

[12]  J. Duker,et al.  Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. , 2010, Optics express.

[13]  Marco Yu,et al.  Anterior chamber angle imaging with swept-source optical coherence tomography: measuring peripheral anterior synechia in glaucoma. , 2013, Ophthalmology.

[14]  Shu Liu,et al.  Anterior chamber angle imaging with swept-source optical coherence tomography: an investigation on variability of angle measurement. , 2011, Investigative ophthalmology & visual science.

[15]  Martin F. Kraus,et al.  En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. , 2014, Ophthalmology.

[16]  Philippe Denis,et al.  Optical coherence tomography quantitative analysis of iris volume changes after pharmacologic mydriasis. , 2010, Ophthalmology.

[17]  Toyohiko Yatagai,et al.  Visualization of sub-retinal pigment epithelium morphologies of exudative macular diseases by high-penetration optical coherence tomography. , 2009, Investigative ophthalmology & visual science.

[18]  Sunita Radhakrishnan,et al.  Reproducibility of Scleral Spur Identification and Angle Measurements Using Fourier Domain Anterior Segment Optical Coherence Tomography , 2012, Journal of ophthalmology.

[19]  Yoshiaki Yasuno,et al.  Reproducibility of retinal and choroidal thickness measurements in enhanced depth imaging and high-penetration optical coherence tomography. , 2011, Investigative ophthalmology & visual science.

[20]  Tin Aung,et al.  Assessment of the scleral spur in anterior segment optical coherence tomography images. , 2008, Archives of ophthalmology.

[21]  J. Duker,et al.  En face swept-source optical coherence tomography in neovascular age-related macular degeneration , 2015, British Journal of Ophthalmology.

[22]  Colin S. Tan,et al.  Topographic variation of choroidal and retinal thicknesses at the macula in healthy adults , 2013, British Journal of Ophthalmology.

[23]  R. Spaide,et al.  Multimodal imaging of optic disc drusen. , 2013, American journal of ophthalmology.

[24]  R. Spaide,et al.  Acquired optic nerve and peripapillary pits in pathologic myopia. , 2012, Ophthalmology.

[25]  D. Henson,et al.  In vivo imaging of cortical vitreous using 1050-nm swept-source deep range imaging optical coherence tomography. , 2014, American journal of ophthalmology.

[26]  J. Duker,et al.  Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers. , 2013, Ophthalmology.

[27]  A. Tsujikawa,et al.  Focal choroidal excavation in eyes with central serous chorioretinopathy. , 2013, American journal of ophthalmology.

[28]  J. Fujimoto,et al.  High-speed, high-resolution optical coherence tomography retinal imaging with a frequency-swept laser at 850 nm. , 2007, Optics letters.

[29]  T. Ishibashi,et al.  Analyses of shape of eyes and structure of optic nerves in eyes with tilted disc syndrome by swept-source optical coherence tomography and three-dimensional magnetic resonance imaging , 2013, Eye.

[30]  A. Tsujikawa,et al.  Three-dimensional tomographic features of dome-shaped macula by swept-source optical coherence tomography. , 2013, American journal of ophthalmology.

[31]  R. Forte,et al.  Comparison of time domain Stratus OCT and spectral domain SLO/OCT for assessment of macular thickness and volume , 2009, Eye.

[32]  A. Tsujikawa,et al.  Macular choroidal thickness and volume of eyes with reticular pseudodrusen using swept-source optical coherence tomography. , 2014, American journal of ophthalmology.

[33]  Srinivas R Sadda,et al.  Spatial distribution of posterior pole choroidal thickness by spectral domain optical coherence tomography. , 2011, Investigative ophthalmology & visual science.

[34]  K. Mansouri,et al.  Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography , 2013, Expert review of medical devices.

[35]  K Bailey Freund,et al.  Swept-source optical coherence tomography features of choroidal nevi. , 2015, American journal of ophthalmology.

[36]  Martin F. Kraus,et al.  Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. , 2014, Ophthalmology.

[37]  E. Balazs,et al.  Human vitreous fibres and vitreoretinal disease. , 1985, Transactions of the ophthalmological societies of the United Kingdom.

[38]  James G. Fujimoto,et al.  Enhanced Vitreous Imaging in Healthy Eyes Using Swept Source Optical Coherence Tomography , 2014, PloS one.

[39]  M. Akiba,et al.  Characteristics of intrachoroidal cavitation located temporal to optic disc in highly myopic eyes , 2013, Eye.

[40]  Toyohiko Yatagai,et al.  High-Speed, swept-source optical coherence tomography: a 3-dimensional view of anterior chamber angle recession. , 2006, Acta ophthalmologica Scandinavica.

[41]  J. Duker,et al.  Enhanced visualization of the choroido-scleral interface using swept-source OCT. , 2013, Ophthalmic surgery, lasers & imaging retina.

[42]  T. Yamashita,et al.  Comparisons of choroidal thickness of normal eyes obtained by two different spectral-domain OCT instruments and one swept-source OCT instrument. , 2013, Investigative ophthalmology & visual science.

[43]  Tin Aung,et al.  Sectoral variations of iridocorneal angle width and iris volume in Chinese Singaporeans: a swept-source optical coherence tomography study , 2014, Graefe's Archive for Clinical and Experimental Ophthalmology.

[44]  Tin Aung,et al.  Assessment of trabecular meshwork width using swept source optical coherence tomography , 2013, Graefe's Archive for Clinical and Experimental Ophthalmology.

[45]  Joan W. Miller,et al.  Reproducibility of retinal thickness measurements on normal and pathologic eyes by different optical coherence tomography instruments. , 2010, American journal of ophthalmology.

[46]  Jin A. Choi,et al.  Measurement of scleral thickness using swept-source optical coherence tomography in patients with open-angle glaucoma and myopia. , 2014, American journal of ophthalmology.

[47]  S. Kishi,et al.  AGING CHANGES OF VITREOMACULAR INTERFACE , 2011, Retina.

[48]  Tock Han Lim,et al.  EVEREST study report 2: imaging and grading protocol, and baseline characteristics of a randomised controlled trial of polypoidal choroidal vasculopathy , 2015, British Journal of Ophthalmology.

[49]  J. Duker,et al.  Optical coherence tomography – current and future applications , 2013, Current Opinion in Ophthalmology.

[50]  Shu Liu,et al.  Anterior Chamber Angle Imaging With Swept-Source Optical Coherence Tomography: Detecting the Scleral Spur, Schwalbe’s Line, and Schlemm’s Canal , 2013, Journal of glaucoma.

[51]  Richard F Spaide,et al.  Visualization of the posterior vitreous with dynamic focusing and windowed averaging swept source optical coherence tomography. , 2014, American journal of ophthalmology.

[52]  Guihua Xu,et al.  Imaging the iris with swept-source optical coherence tomography: relationship between iris volume and primary angle closure. , 2013, Ophthalmology.

[53]  T. Lim,et al.  A novel technique of adjusting segmentation boundary layers to achieve comparability of retinal thickness and volumes between spectral domain and time domain optical coherence tomography. , 2012, Investigative ophthalmology & visual science.

[54]  Lala Ceklic,et al.  Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. , 2009, Investigative ophthalmology & visual science.

[55]  Masanori Hangai,et al.  Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography. , 2013, Investigative ophthalmology & visual science.

[56]  Jay S Duker,et al.  Direct comparison of spectral-domain and swept-source OCT in the measurement of choroidal thickness in normal eyes , 2013, British Journal of Ophthalmology.

[57]  Colin S. Tan,et al.  Macular choroidal thicknesses in healthy adults--relationship with ocular and demographic factors. , 2014, Investigative ophthalmology & visual science.

[58]  Hideo Akiyama,et al.  Observation of posterior precortical vitreous pocket using swept-source optical coherence tomography. , 2013, Investigative ophthalmology & visual science.

[59]  S. Ooto,et al.  High-penetration optical coherence tomography and enhanced depth imaging in presumed retinal pigment epithelial hamartoma. , 2013, Retinal cases & brief reports.

[60]  Tin Aung,et al.  Assessment of circumferential angle-closure by the iris-trabecular contact index with swept-source optical coherence tomography. , 2013, Ophthalmology.

[61]  E. Balazs,et al.  Morphology and ultrastructure of human vitreous fibers. , 1989, Investigative ophthalmology & visual science.

[62]  Taiji Sakamoto,et al.  Repeatability and reproducibility of subfoveal choroidal thickness in normal eyes of Japanese using different SD-OCT devices. , 2012, Investigative ophthalmology & visual science.

[63]  M. Akiba,et al.  Intrachoroidal cavitation in macular area of eyes with pathologic myopia. , 2012, American journal of ophthalmology.

[64]  Martin F. Kraus,et al.  Choroidal analysis in healthy eyes using swept-source optical coherence tomography compared to spectral domain optical coherence tomography. , 2014, American journal of ophthalmology.

[65]  S. Sadda,et al.  Comparison of retinal thicknesses measured using swept-source and spectral-domain optical coherence tomography devices. , 2015, Ophthalmic surgery, lasers & imaging retina.

[66]  Kohji Nishida,et al.  En-face high-penetration optical coherence tomography imaging in polypoidal choroidal vasculopathy , 2014, British Journal of Ophthalmology.

[67]  Richard F Spaide,et al.  Optical coherence tomography: imaging of the choroid and beyond. , 2013, Survey of ophthalmology.

[68]  L. Pierro,et al.  Macular thickness interoperator and intraoperator reproducibility in healthy eyes using 7 optical coherence tomography instruments. , 2010, American journal of ophthalmology.

[69]  Angelika Unterhuber,et al.  Optical coherence tomography today: speed, contrast, and multimodality , 2014, Journal of biomedical optics.

[70]  Colin S. Tan,et al.  Comparison of choroidal thicknesses using swept source and spectral domain optical coherence tomography in diseased and normal eyes , 2014, British Journal of Ophthalmology.

[71]  T. Lim,et al.  Calculating the predicted retinal thickness from spectral domain and time domain optical coherence tomography – comparison of different methods , 2014, Graefe's Archive for Clinical and Experimental Ophthalmology.

[72]  M. Akiba,et al.  Association between shape of sclera and myopic retinochoroidal lesions in patients with pathologic myopia. , 2012, Investigative ophthalmology & visual science.

[73]  E. Souied,et al.  In vivo visualization of perforating vessels and focal scleral ectasia in pathological myopia. , 2013, Investigative ophthalmology & visual science.

[74]  T. Lim,et al.  Polypoidal choroidal vasculopathy: an angiographic discussion , 2010, Eye.