The Advanced Step Real Time Iteration for NMPC

This paper introduces an extension to the well-known Real Time Iteration (RTI) for Nonlinear Model Predictive Control (NMPC). We combine algorithmic ideas of the RTI, Advanced Step Controller and Multi-Level Iteration (MLI) framework and get thereby a family of new algorithms that allow one to trade control performance for computational efficiency in a flexible way. The main idea is to improve the linearization point for a new iteration by making cheap iterations with a new initial parameter prediction. We derive a general contraction estimate for the new algorithm and show that this approach yields closer tracking of the optimal solution manifold and results in better control performance. The efficacy of our approach is shown on a nontrivial numerical example.

[1]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[2]  MORITZ DIEHL,et al.  A Real-Time Iteration Scheme for Nonlinear Optimization in Optimal Feedback Control , 2005, SIAM J. Control. Optim..

[3]  Hans Joachim Ferreau,et al.  Efficient Numerical Methods for Nonlinear MPC and Moving Horizon Estimation , 2009 .

[4]  Alberto Bemporad,et al.  From linear to nonlinear MPC: bridging the gap via the real-time iteration , 2020, Int. J. Control.

[5]  Dinh Quoc Tran,et al.  Adjoint-Based Predictor-Corrector Sequential Convex Programming for Parametric Nonlinear Optimization , 2012, SIAM J. Optim..

[6]  Moritz Diehl,et al.  Efficient Zero-Order NMPC with Feasibility and Stability Guarantees , 2019, 2019 18th European Control Conference (ECC).

[7]  Leonard Wirsching Multi-level iteration schemes with adaptive level choice for nonlinear model predictive control , 2018 .

[8]  Moritz Diehl,et al.  An Efficient Inexact NMPC Scheme with Stability and Feasibility Guarantees , 2016 .

[9]  Moritz Diehl,et al.  Fast auto generated ACADO integrators and application to MHE with multi-rate measurements , 2013, 2013 European Control Conference (ECC).

[10]  Moritz Diehl,et al.  Contraction Estimates for Abstract Real-Time Algorithms for NMPC , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[11]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[12]  Toshiyuki Ohtsuka,et al.  A continuation/GMRES method for fast computation of nonlinear receding horizon control , 2004, Autom..

[13]  Moritz Diehl,et al.  A Homotopy-based Nonlinear Interior-Point Method for NMPC , 2017 .

[14]  Christian Kirches,et al.  qpOASES: a parametric active-set algorithm for quadratic programming , 2014, Mathematical Programming Computation.

[15]  M. Diehl,et al.  Nominal stability of real-time iteration scheme for nonlinear model predictive control , 2005 .

[16]  Moritz Diehl,et al.  Real-Time Optimization for Large Scale Nonlinear Processes , 2001 .

[17]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[18]  Hans Bock,et al.  Constrained Optimal Feedback Control of Systems Governed by Large Differential Algebraic Equations , 2007 .

[19]  Moritz Diehl,et al.  Towards a modular software package for embedded optimization , 2018 .

[20]  Stephen P. Boyd,et al.  Embedded code generation using the OSQP solver , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[21]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[22]  Rien Quirynen,et al.  Numerical Simulation Methods for Embedded Optimization , 2017 .

[23]  Victor M. Zavala,et al.  The advanced-step NMPC controller: Optimality, stability and robustness , 2009, Autom..

[24]  Moritz Diehl,et al.  Recent Advances in Quadratic Programming Algorithms for Nonlinear Model Predictive Control , 2018, Vietnam Journal of Mathematics.

[25]  Hubertus Th. Jongen,et al.  Parametric optimization - singularities, pathfollowing and jumps , 1990 .

[26]  Moritz Diehl,et al.  CasADi: a software framework for nonlinear optimization and optimal control , 2018, Mathematical Programming Computation.