Biodiversity time series are biased towards increasing species richness in changing environments

[1]  J. Tobias,et al.  Loss of functional diversity through anthropogenic extinctions of island birds is not offset by biotic invasions , 2021, Science advances.

[2]  K. Gaston,et al.  Habitat change and biased sampling influence estimation of diversity trends , 2021, Current Biology.

[3]  E. Casamayor,et al.  The characteristic time of ecological communities , 2020, Ecology.

[4]  J. Olden,et al.  RivFishTIME: A global database of fish time‐series to study global change ecology in riverine systems , 2020, Global Ecology and Biogeography.

[5]  Patrick L. Thompson,et al.  The geography of biodiversity change in marine and terrestrial assemblages , 2019, Science.

[6]  Patrick L. Thompson,et al.  Species richness change across spatial scales , 2019, Oikos.

[7]  J. Capitán,et al.  Colonization and extinction rates estimated from temporal dynamics of ecological communities: The island r package , 2019, Methods in Ecology and Evolution.

[8]  E. Borer,et al.  Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilisation. , 2018, Ecology letters.

[9]  P. Legendre,et al.  Concomitant impacts of climate change, fragmentation and non‐native species have led to reorganization of fish communities since the 1980s , 2018 .

[10]  Hideyasu Shimadzu,et al.  Estimates of local biodiversity change over time stand up to scrutiny , 2016, bioRxiv.

[11]  M. J. Hensel,et al.  Recent Trends in Local-Scale Marine Biodiversity Reflect Community Structure and Human Impacts , 2015, Current Biology.

[12]  D. Alonso,et al.  Fish community reassembly after a coral mass mortality: higher trophic groups are subject to increased rates of extinction. , 2015, Ecology letters.

[13]  Lander Baeten,et al.  Global meta-analysis reveals no net change in local-scale plant biodiversity over time , 2013, Proceedings of the National Academy of Sciences.

[14]  Quentin Groom,et al.  Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants , 2013, Ecology letters.

[15]  Ben Collen,et al.  Experimentally testing the accuracy of an extinction estimator: Solow's optimal linear estimation model. , 2013, The Journal of animal ecology.

[16]  Katja Tielbörger,et al.  Combined disturbances and the role of their spatial and temporal properties in shaping community structure , 2012 .

[17]  H. Suryapranata,et al.  It’s a small world after all , 2012, Netherlands Heart Journal.

[18]  K. Hylander Faculty of 1000 evaluation for Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. , 2010 .

[19]  S. T. Buckland,et al.  Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. , 2010, Trends in ecology & evolution.

[20]  S. Jackson,et al.  Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. , 2010, Trends in ecology & evolution.

[21]  M. Pärtel,et al.  Extinction debt: a challenge for biodiversity conservation. , 2009, Trends in ecology & evolution.

[22]  R. Rigby,et al.  Generalized Additive Models for Location Scale and Shape (GAMLSS) in R , 2007 .

[23]  Robert W. Taylor,et al.  Experimental Strategies Towards Treating Mitochondrial DNA Disorders , 2007, Bioscience reports.

[24]  F. Rahel Biogeographic barriers, connectivity and homogenization of freshwater faunas: it's a small world after all , 2007 .

[25]  Julian D. Olden,et al.  On defining and quantifying biotic homogenization , 2006 .

[26]  Jonathan M. Chase,et al.  The metacommunity concept: a framework for multi-scale community ecology , 2004 .

[27]  Andrew R. Solow,et al.  A NONPARAMETRIC TEST FOR EXTINCTION BASED ON A SIGHTING RECORD , 2003 .

[28]  P. Inchausti,et al.  Lognormality in ecological time series , 2002 .

[29]  R. Dial The Unified Neutral Theory of Biodiversity and Biogeography.Monographs in Population Biology, Volume 32. ByStephen P Hubbell.Princeton (New Jersey): Princeton University Press. $75.00 (hardcover); $29.95 (paper). xiv + 375 p; ill.; index. ISBN: 0–691–02129–5 (hc); 0–691–02128–7 (pb). 2001. , 2002 .

[30]  Robert K. Colwell,et al.  Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness , 2001 .

[31]  Kirk A. Moloney,et al.  The Effects of Disturbance Architecture on Landscape-Level Population Dynamics , 1996 .

[32]  M. Nowak,et al.  Habitat destruction and the extinction debt , 1994, Nature.

[33]  Douglas A. Wolfe,et al.  Long-term biological data sets: Their role in research, monitoring, and management of estuarine and coastal marine systems , 1987 .

[34]  James H. Brown Species Diversity of Seed‐Eating Desert Rodents in Sand Dune Habitats , 1973 .

[35]  James H. Brown Mammals on Mountaintops: Nonequilibrium Insular Biogeography , 1971, The American Naturalist.

[36]  R. Macarthur,et al.  AN EQUILIBRIUM THEORY OF INSULAR ZOOGEOGRAPHY , 1963 .

[37]  E. Borer,et al.  Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring , 2018 .

[38]  Jonathan D. G. Jones,et al.  Assemblage Time Series Reveal Biodiversity Change but Not Systematic Loss , 2018 .

[39]  S. Stuart,et al.  Wildlife in a changing world : an analysis of the 2008 IUCN red list of threatened species , 2009 .

[40]  P. Vitousek,et al.  INTRODUCED SPECIES: A SIGNIFICANT COMPONENT OF HUMAN-CAUSED GLOBAL CHANGE , 1997 .