Principles underlying chromatophore addition during maturation in the European cuttlefish, Sepia officinalis
暂无分享,去创建一个
N. Tublitz | Jarred Yacob | Alexandra Cosima Lewis | Allyson Gosling | Debra H. J. St Hilaire | Lindsay Tesar | Michelle McRae | Nathan J. Tublitz | D. Hilaire | Allyson A. Gosling | A. Lewis | J. Yacob | L. Tesar | Michelle McRae
[1] J. Zuanon,et al. The almost invisible league: crypsis and association between minute fishes and shrimps as a possible defence against visually hunting predators , 2006 .
[2] A. Packard. Sizes and distribution of chromatophores during post-embryonic development in cephalopods , 1985 .
[3] R. Hanlon,et al. Adaptive Coloration in Young Cuttlefish (Sepia Officinalis L.): The Morphology and Development of Body Patterns and Their Relation to Behaviour , 1988 .
[4] P. K. Loi,et al. Long Term Rearing of Cuttlefish in a Small Scale Facility , 1998 .
[5] R. A. Cloney,et al. Reflector cells in the skin of Octopus dofleini , 2004, Cell and Tissue Research.
[6] J. Messenger,et al. Cephalopod chromatophores: neurobiology and natural history , 2001, Biological reviews of the Cambridge Philosophical Society.
[7] J. H. Severaid. Pelage Changes in the Snowshoe Hare (Lepus americanus struthopus Bangs) , 1945 .
[8] C. Chubb,et al. Disruptive coloration in cuttlefish: a visual perception mechanism that regulates ontogenetic adjustment of skin patterning , 2007, Journal of Experimental Biology.
[9] S. Johnsen,et al. Hidden in Plain Sight: The Ecology and Physiology of Organismal Transparency , 2001, The Biological Bulletin.
[10] Jansen Zuanon,et al. Fallen leaves on the water-bed: diurnal camouflage of three night active fish species in an Amazonian streamlet , 2006 .
[11] Richard A. Cloney,et al. Ultrastructure of cephalopod chromatophore organs , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[12] J. Messenger,et al. Skin patterning in Octopus and other genera , 1977 .
[13] William Blake Gibson,et al. The Nature of Animal Colours , 1961 .
[14] H. Kaiser,et al. The effect of 2-phenoxyethanol and transport packing density on the post-transport survival rate and metabolic activity in the goldfish, Carassius auratus , 1998 .
[15] Roger Hanlon,et al. Cephalopod dynamic camouflage , 2007, Current Biology.
[16] R. Hanlon,et al. Cephalopod coloration model. I. Squid chromatophores and iridophores. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.
[17] N. Shashar,et al. Modified laboratory culture techniques for the European cuttlefish Sepia officinalis. , 1998, The Biological bulletin.
[18] Richard A. Cloney,et al. Chromatophore Organs, Reflector Cells, Iridocytes and Leucophores in Cephalopods , 1983 .
[19] A. Luria,et al. The functional organization of the brain. , 1970, Scientific American.
[20] A. Packard,et al. Body patterns of Octopus vulgaris and maturation of the response to disturbance. , 1971 .
[21] R. Hanlon,et al. Cephalopod coloration model. II. Multiple layer skin effects. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.
[22] P. Hébert. Spittlebug morph mimics avian excrement , 1974, Nature.
[23] B. Boycott. The functional organization of the brain of the cuttlefish Sepia officinalis , 1961, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[24] E. Poulton. Adaptive Coloration in Animals , 1940, Nature.
[25] S. Merilaita,et al. Animal camouflage: current issues and new perspectives , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.
[26] A. Sykes,et al. Growth of young cuttlefish, Sepia officinalis (Linnaeus 1758) at the upper end of the biological distribution temperature range , 2001 .
[27] N. Shashar,et al. Behavioral evidence for intraspecific signaling with achromatic and polarized light by cuttlefish (Mollusca: Cephalopoda) , 2004 .
[28] A. Packard,et al. What the octopus shows to the world. , 1969, Endeavour.
[29] R. Baddeley,et al. Cuttlefish camouflage: a quantitative study of patterning , 2007 .