Pluto's haze as a surface material

[1]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[2]  D. Reuter,et al.  Methane distribution on Pluto as mapped by the New Horizons Ralph/MVIC instrument , 2018, Icarus.

[3]  T. Lauer,et al.  Dunes on Pluto , 2018, Science.

[4]  O. Umurhan,et al.  The nitrogen cycles on Pluto over seasonal and astronomical timescales , 2018, Icarus.

[5]  Michael W. Davis,et al.  Structure and composition of Pluto's atmosphere from the New Horizons solar ultraviolet occultation , 2017, 1704.01511.

[6]  D. Reuter,et al.  Composition of Pluto’s small satellites: Analysis of New Horizons spectral images , 2017, Icarus.

[7]  J. Kammer,et al.  Photochemistry on Pluto - I. Hydrocarbons and aerosols. , 2017, Monthly notices of the Royal Astronomical Society.

[8]  D. Strobel,et al.  Haze heats Pluto’s atmosphere yet explains its cold temperature , 2017, Nature.

[9]  D. Reuter,et al.  The Color of Pluto from New Horizons , 2017 .

[10]  D. Strobel,et al.  Comparative planetary nitrogen atmospheres: Density and thermal structures of Pluto and Triton , 2017 .

[11]  D. Strobel,et al.  Radio occultation measurements of Pluto’s neutral atmosphere with New Horizons , 2017 .

[12]  E. Millour,et al.  A post-new horizons global climate model of Pluto including the N 2 , CH 4 and CO cycles , 2017 .

[13]  D. Reuter,et al.  Physical state and distribution of materials at the surface of Pluto from New Horizons LEISA imaging spectrometer , 2017 .

[14]  J. Moore,et al.  Past epochs of significantly higher pressure atmospheres on Pluto , 2017 .

[15]  T. Lauer,et al.  Craters of the Pluto-Charon System , 2017 .

[16]  K. Ennico,et al.  Long-term surface temperature modeling of Pluto , 2017 .

[17]  T. Lauer,et al.  Climate zones on Pluto and Charon , 2017 .

[18]  T. Lauer,et al.  Geological mapping of Sputnik Planitia on Pluto , 2017 .

[19]  D. Strobel,et al.  Haze in Pluto's atmosphere , 2017, 1702.07771.

[20]  F. Forget,et al.  3D modeling of organic haze in Pluto’s atmosphere , 2017, 1702.03783.

[21]  Y. Sekine,et al.  The Charon-forming giant impact as a source of Pluto’s dark equatorial regions , 2017, Nature Astronomy.

[22]  A. Toigo,et al.  Penitentes as the origin of the bladed terrain of Tartarus Dorsa on Pluto , 2017, Nature.

[23]  G. R. Gladstone,et al.  The puzzling detection of x-rays from Pluto by Chandra , 2016, 1610.07963.

[24]  M. Summers,et al.  Constraints on the microphysics of Pluto's photochemical haze from New Horizons observations , 2016, Icarus.

[25]  D. Reuter,et al.  Pluto’s global surface composition through pixel-by-pixel Hapke modeling of New Horizons Ralph/LEISA data , 2016, 1604.08468.

[26]  C. M. Lisse,et al.  Global albedos of Pluto and Charon from LORRI New Horizons observations , 2016, 1604.06129.

[27]  D. Reuter,et al.  Inflight radiometric calibration of New Horizons' Multispectral Visible Imaging Camera (MVIC) , 2016, 1603.08940.

[28]  T. Lauer,et al.  Mean radius and shape of Pluto and Charon from New Horizons images , 2016, 1603.00821.

[29]  F. Forget,et al.  Observed glacier and volatile distribution on Pluto from atmosphere–topography processes , 2016, Nature.

[30]  J. Moore,et al.  The rapid formation of Sputnik Planitia early in Pluto’s history , 2016, Nature.

[31]  O. Umurhan,et al.  Bladed Terrain on Pluto: Possible origins and evolution , 2016 .

[32]  T. Lauer,et al.  The formation of Charon’s red poles from seasonally cold-trapped volatiles , 2016, Nature.

[33]  M. Summers,et al.  The photochemistry of Pluto's atmosphere as illuminated by New Horizons , 2016 .

[34]  H. Melosh,et al.  Vigorous convection as the explanation for Pluto’s polygonal terrain , 2016, Nature.

[35]  O. Umurhan,et al.  Convection in a volatile nitrogen-ice-rich layer drives Pluto’s geological vigour , 2016, Nature.

[36]  D. Strobel,et al.  Pluto’s interaction with its space environment: Solar wind, energetic particles, and dust , 2016, Science.

[37]  D. E. Jennings,et al.  Surface compositions across Pluto and Charon , 2016, Science.

[38]  T. Lauer,et al.  The geology of Pluto and Charon through the eyes of New Horizons , 2016, Science.

[39]  D. Strobel,et al.  The atmosphere of Pluto as observed by New Horizons , 2016, Science.

[40]  C. M. Lisse,et al.  The Pluto system: Initial results from its exploration by New Horizons , 2015, Science.

[41]  R. Binzel,et al.  Pluto’s insolation history: Latitudinal variations and effects on atmospheric pressure , 2015 .

[42]  D. Strobel,et al.  Pluto’s solar wind interaction: Collisional effects , 2015 .

[43]  D. Paige,et al.  Pluto's climate modeled with new observational constraints , 2015 .

[44]  A. Poppe Interplanetary dust influx to the Pluto–Charon system , 2015 .

[45]  W. Grundy,et al.  Ejecta transfer in the Pluto system , 2014, 1403.4873.

[46]  S. Stern,et al.  Ly α @Pluto , 2015 .

[47]  W. Grundy,et al.  Evidence for longitudinal variability of ethane ice on the surface of Pluto , 2014, 1406.1748.

[48]  S. Sandford,et al.  ICE CHEMISTRY ON OUTER SOLAR SYSTEM BODIES: CARBOXYLIC ACIDS, NITRILES, AND UREA DETECTED IN REFRACTORY RESIDUES PRODUCED FROM THE UV PHOTOLYSIS OF N2:CH4:CO-CONTAINING ICES , 2014 .

[49]  Joseph G. Peterson,et al.  Closing the uplink/downlink loop on the new Horizons Mission to Pluto , 2013, 2013 IEEE Aerospace Conference.

[50]  J. Wahlund,et al.  Aerosol growth in Titan’s ionosphere , 2013, Proceedings of the National Academy of Sciences.

[51]  R. Kaiser,et al.  ELECTRON IRRADIATION OF KUIPER BELT SURFACE ICES: TERNARY N2–CH4–CO MIXTURES AS A CASE STUDY , 2012 .

[52]  E. Quirico,et al.  Optical constants from 370 nm to 900 nm of Titan tholins produced in a low pressure RF plasma discharge , 2012 .

[53]  B. Cheng,et al.  SPECTRA AND PHOTOLYSIS OF PURE NITROGEN AND METHANE DISPERSED IN SOLID NITROGEN WITH VACUUM–ULTRAVIOLET LIGHT , 2012 .

[54]  J. Burns,et al.  Finding the trigger to Iapetus' odd global albedo pattern: Dynamics of dust from Saturn's irregular satellites , 2011, 1106.1893.

[55]  B. Buratti,et al.  The roughness of the dark side of Iapetus from the 2004 to 2005 flyby , 2010 .

[56]  J. Burns,et al.  Iapetus: Unique Surface Properties and a Global Color Dichotomy from Cassini Imaging , 2010, Science.

[57]  C. Hansen,et al.  HiRISE observations of gas sublimation-driven activity in Mars’ southern polar regions: III. Models of processes involving translucent ice , 2010 .

[58]  Nicolas Fray,et al.  Sublimation of ices of astrophysical interest: A bibliographic review , 2009 .

[59]  M. Skrutskie,et al.  Saturn's largest ring , 2009, Nature.

[60]  Buu N. Tran,et al.  Determination of the complex refractive indices of Titan haze analogs using photothermal deflection spectroscopy , 2009 .

[61]  Firenze,et al.  Cosmic-ray ionization of molecular clouds , 2009, 0904.4149.

[62]  Paul F. McMillan,et al.  New experimental constraints on the composition and structure of tholins , 2008 .

[63]  J. Wahlund,et al.  Negative ion chemistry in Titan's upper atmosphere , 2008 .

[64]  E. H. Darlington,et al.  Long-Range Reconnaissance Imager on New Horizons , 2007, 0709.4278.

[65]  Hugh H. Kieffer,et al.  Cold jets in the Martian polar caps , 2007 .

[66]  D. Haggerty,et al.  Long-Term Fluences of Solar Energetic Particles from H to Fe , 2007 .

[67]  C. Sotin,et al.  Titan: Preliminary results on surface properties and photometry from VIMS observations of the early flybys , 2006 .

[68]  Hugh H. Kieffer,et al.  CO2 jets formed by sublimation beneath translucent slab ice in Mars' seasonal south polar ice cap , 2006, Nature.

[69]  Stuart McMuldroch,et al.  Ralph: A Visible/Infrared Imager for the New Horizons Pluto/Kuiper Belt Mission , 2005, SPIE Optics + Photonics.

[70]  Christopher P. McKay,et al.  Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze , 2004 .

[71]  Mark I. Richardson,et al.  Sublimation of Mars's southern seasonal CO2 ice cap and the formation of spiders , 2003 .

[72]  J. Richardson,et al.  Proton Irradiation of Centaur, Kuiper Belt, and Oort Cloud Objects at Plasma to Cosmic Ray Energy , 2003 .

[73]  Patrice Coll,et al.  Complex refractive index of Titan's aerosol analogues in the 200-900 nm domain , 2002 .

[74]  William M. Grundy,et al.  Solar Gardening and the Seasonal Evolution of Nitrogen Ice on Triton and Pluto , 2000 .

[75]  Hugh H. Kieffer,et al.  Mars south polar spring and summer behavior observed by TES: Seasonal cap evolution controlled by frost grain size , 2000 .

[76]  J. Eluszkiewicz,et al.  Metamorphism of Solar System Ices , 1998 .

[77]  Richard P. Binzel,et al.  Volatile Transport, Seasonal Cycles, and Atmospheric Dynamics on Pluto , 1997 .

[78]  S. Peale,et al.  Dynamics of the Pluto-Charon Binary , 1997 .

[79]  D. Domingue,et al.  Surface Textural Properties of Icy Satellites: A Comparison between Europa and Rhea , 1995 .

[80]  B. Buratti The Dark Side of Iapetus: Additional Evidence for an Exogenous Origin , 1995 .

[81]  W. R. Thompson,et al.  Optical Constants of Triton Tholin: Preliminary Results , 1994 .

[82]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[83]  W. R. Thompson,et al.  Production and Optical Constants of Ice Tholin from Charged Particle Irradiation of (1:6) C2H6/H2O at 77 K , 1993 .

[84]  J. Veverka,et al.  Mimas : photometric roughness and albedo map , 1992 .

[85]  Robert E. Johnson Energetic Charged-Particle Interactions with Atmospheres and Surfaces , 1990 .

[86]  H. Kieffer H2O grain size and the amount of dust in Mars' Residual north polar cap , 1990 .

[87]  W. R. Thompson,et al.  Coloration and darkening of methane clathrate and other ices by charged particle irradiation: applications to the outer solar system. , 1987, Journal of geophysical research.

[88]  Joseph Veverka,et al.  Photometric properties of lunar terrains derived from Hapke's equation , 1987 .

[89]  J. Veverka,et al.  Photometry of rough planetary surfaces: The role of multiple scattering , 1985 .

[90]  L. Calcagno,et al.  Build up of carbonaceous material by fast protons on Pluto and Triton , 1984 .

[91]  M. W. Williams,et al.  Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft x-ray to microwave frequencies , 1984 .

[92]  B. Hapke Bidirectional reflectance spectroscopy , 1984 .

[93]  B. Buratti Application of a radiative transfer model to bright icy satellites , 1984 .

[94]  C. N. R. Rao,et al.  Ultra-violet and visible spectroscopy: Chemical applications , 1974 .

[95]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .