Single-cell genomic profiling of human dopamine neurons identifies a population that selectively degenerates in Parkinson’s disease

[1]  Houeto Jean-Luc [Parkinson's disease]. , 2022, La Revue du praticien.

[2]  Kathleen M. Jagodnik,et al.  Gene Set Knowledge Discovery with Enrichr , 2021, Current protocols.

[3]  J. Mulder,et al.  Distinct amyloid-β and tau-associated microglia profiles in Alzheimer’s disease , 2021, Acta Neuropathologica.

[4]  Daniel J. Gaffney,et al.  Genome-wide meta-analysis, fine-mapping, and integrative prioritization implicate new Alzheimer’s disease risk genes , 2021, Nature Genetics.

[5]  Patricia A. Castruita,et al.  p53 is a central regulator driving neurodegeneration caused by C9orf72 poly(PR) , 2021, Cell.

[6]  Evan Z. Macosko,et al.  Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2 , 2020, Nature Biotechnology.

[7]  David Kulp,et al.  Innovations present in the primate interneuron repertoire , 2020, Nature.

[8]  P. May,et al.  Single-cell sequencing of the human midbrain reveals glial activation and a neuronal state specific to Parkinson's disease , 2020, medRxiv.

[9]  C. Webber,et al.  A single-cell atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders , 2020, Nature Communications.

[10]  D. Goldstein,et al.  Elevated COUP-TFII expression in dopaminergic neurons accelerates the progression of Parkinson’s disease through mitochondrial dysfunction , 2020, PLoS genetics.

[11]  Rafael A. Irizarry,et al.  Robust decomposition of cell type mixtures in spatial transcriptomics , 2020, Nature Biotechnology.

[12]  Hunna J. Watson,et al.  Genetic identification of cell types underlying brain complex traits yields insights into the etiology of Parkinson’s disease , 2020, Nature Genetics.

[13]  N. Neff,et al.  Molecular characterization of selectively vulnerable neurons in Alzheimer’s Disease , 2020, Nature Neuroscience.

[14]  C. Webber,et al.  Human‐Specific Transcriptome of Ventral and Dorsal Midbrain Dopamine Neurons , 2020, Annals of neurology.

[15]  R. Awatramani,et al.  Classification of Midbrain Dopamine Neurons Using Single-Cell Gene Expression Profiling Approaches , 2020, Trends in Neurosciences.

[16]  Daniel Osorio,et al.  Systematic determination of the mitochondrial proportion in human and mice tissues for single-cell RNA sequencing data quality control , 2020, bioRxiv.

[17]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[18]  Allan R. Jones,et al.  Conserved cell types with divergent features in human versus mouse cortex , 2019, Nature.

[19]  Richard Reynolds,et al.  Neuronal vulnerability and multilineage diversity in multiple sclerosis , 2019, Nature.

[20]  Evan Z. Macosko,et al.  Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity , 2019, Cell.

[21]  Maximilian Haeussler,et al.  Single-cell genomics identifies cell type–specific molecular changes in autism , 2019, Science.

[22]  Manolis Kellis,et al.  Single-cell transcriptomic analysis of Alzheimer’s disease , 2019, Nature.

[23]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[24]  Dheeraj Malhotra,et al.  Altered human oligodendrocyte heterogeneity in multiple sclerosis , 2019, Nature.

[25]  Trygve E Bakken,et al.  Single-nucleus and single-cell transcriptomes compared in matched cortical cell types , 2018, PloS one.

[26]  D. Korzhevskii,et al.  Immunohistochemical Characteristics of Neurons in the Substantia Nigra of the Human Brain , 2018, Neuroscience and Behavioral Physiology.

[27]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[28]  Kamil Slowikowski,et al.  Mixed-effects association of single cells identifies an expanded effector CD4+ T cell subset in rheumatoid arthritis , 2018, Science Translational Medicine.

[29]  John Hardy,et al.  Selective vulnerability in neurodegenerative diseases , 2018, Nature Neuroscience.

[30]  Evan Z. Macosko,et al.  Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain , 2018, Cell.

[31]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[32]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[33]  Gerome Breen,et al.  Genetic identification of brain cell types underlying schizophrenia , 2017, Nature Genetics.

[34]  Evan Z. Macosko,et al.  Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types , 2017, Nature Genetics.

[35]  A. Pitsillides,et al.  Pathogenic LRRK2 variants are gain-of-function mutations that enhance LRRK2-mediated repression of β-catenin signaling , 2017, Molecular Neurodegeneration.

[36]  Lars E. Borm,et al.  Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells , 2016, Cell.

[37]  Tomas Bergman,et al.  A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson's disease , 2016, The EMBO journal.

[38]  N. Greig,et al.  Dopaminergic neuron‐specific deletion of p53 gene is neuroprotective in an experimental Parkinson's disease model , 2016, Journal of neurochemistry.

[39]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[40]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[41]  C. Creighton,et al.  Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure , 2015, Nature Communications.

[42]  E. Arenas,et al.  How to make a midbrain dopaminergic neuron , 2015, Development.

[43]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[44]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[45]  Joris M. Mooij,et al.  MAGMA: Generalized Gene-Set Analysis of GWAS Data , 2015, PLoS Comput. Biol..

[46]  Georg Auburger,et al.  The Brainstem Pathologies of Parkinson's Disease and Dementia with Lewy Bodies , 2015, Brain pathology.

[47]  P. Greengard,et al.  Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update , 2014, Front. Neuroanat..

[48]  J. Kehr,et al.  Sox6 and Otx2 control the specification of substantia nigra and ventral tegmental area dopamine neurons. , 2014, Cell reports.

[49]  A. Björklund,et al.  NURR1 in Parkinson disease—from pathogenesis to therapeutic potential , 2013, Nature Reviews Neurology.

[50]  O. Isacson,et al.  Functional enhancement and protection of dopaminergic terminals by RAB3B overexpression , 2009, Proceedings of the National Academy of Sciences.

[51]  Patrick M. Abou-Sleiman,et al.  Transcriptional repression of p53 by parkin and impairment by mutations associated with autosomal recessive juvenile Parkinson's disease , 2009, Nature Cell Biology.

[52]  E. Hirsch,et al.  Regional vulnerability of mesencephalic dopaminergic neurons prone to degenerate in Parkinson's disease: A post-mortem study in human control subjects , 2006, Neurobiology of Disease.

[53]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S. Snyder,et al.  p53 Mediates Cellular Dysfunction and Behavioral Abnormalities in Huntington’s Disease , 2005, Neuron.

[55]  A. Graybiel,et al.  The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. , 1999, Brain : a journal of neurology.

[56]  A. Graybiel,et al.  The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. , 1999, Brain : a journal of neurology.

[57]  Y. Kitamura,et al.  Changes of p53 in the brains of patients with Alzheimer's disease. , 1997, Biochemical and biophysical research communications.

[58]  D. Riche,et al.  Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons observed in parkinson's disease , 1994, Neuroscience.

[59]  E. Rosengren,et al.  Isolation of a new tautomerase monitored by the conversion of D-dopachrome to 5,6-dihydroxyindole. , 1993, Biochemical and biophysical research communications.

[60]  A. Lees,et al.  Ageing and Parkinson's disease: substantia nigra regional selectivity. , 1991, Brain : a journal of neurology.

[61]  W. Gibb,et al.  Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. , 1991, Journal of neurology, neurosurgery, and psychiatry.

[62]  P. Mcgeer,et al.  Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K , 1990, Brain Research.

[63]  C. Markham,et al.  Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP , 1987, Brain Research.