Connecting two Gaussian cluster states by quantum entanglement swapping.

Cluster state is an important resource for one-way quantum computation and quantum network. In this paper, we present a scheme for connecting two Gaussian cluster states by entanglement swapping, which can be used to connect two local quantum networks composed by cluster states. The connection schemes between different types of four-mode cluster states are analyzed and we show that the structure of the output states after entanglement swapping may be not the same as that of the input states. The entanglement of the obtained new cluster states are presented when suitable feedforward schemes are applied in the entanglement swapping process. By using optimal gains in the classical channel and inseparability criteria, the requirement of squeezing parameters for obtaining entanglement of output states are reduced. The presented scheme provides a concrete reference for constructing quantum networks with cluster states.

[1]  N. Gisin,et al.  Long-distance entanglement swapping with photons from separated sources , 2004, quant-ph/0409093.

[2]  Jieping Ye,et al.  A quantum network of clocks , 2013, Nature Physics.

[3]  A. Furusawa,et al.  Hybrid discrete- and continuous-variable quantum information , 2014, Nature Physics.

[4]  Yu-Bo Sheng,et al.  Complete logic Bell-state analysis assisted with photonic Faraday rotation , 2015 .

[5]  Yu-Bo Sheng,et al.  Complete hyperentangled-Bell-state analysis for quantum communication , 2010, 1103.0230.

[6]  Akira Furusawa,et al.  Demonstration of cluster-state shaping and quantum erasure for continuous variables , 2010, 1006.2225.

[7]  Xiaolong Su,et al.  Experimental preparation of eight-partite cluster state for photonic qumodes. , 2012, Optics letters.

[8]  Akira Furusawa,et al.  Demonstration of unconditional one-way quantum computations for continuous variables. , 2010, Physical review letters.

[9]  S. Tan Confirming entanglement in continuous variable quantum teleportation , 1999 .

[10]  Akira Furusawa,et al.  Detecting genuine multipartite continuous-variable entanglement , 2003 .

[11]  S. Braunstein,et al.  Unconditional teleportation of continuous-variable entanglement , 1999, QELS 2000.

[12]  Braunstein,et al.  Multipartite entanglement for continuous variables: A quantum teleportation network , 1999, Physical review letters.

[13]  Yu Wang,et al.  Einstein-Podolsky-Rosen-steering swapping between two Gaussian multipartite entangled states , 2017 .

[14]  Xiaowei Deng,et al.  Gate sequence for continuous variable one-way quantum computation , 2013, Nature Communications.

[15]  Gerardo Adesso,et al.  Demonstration of Monogamy Relations for Einstein-Podolsky-Rosen Steering in Gaussian Cluster States. , 2017, Physical review letters.

[16]  S. Braunstein,et al.  Continuous-variable Gaussian analog of cluster states , 2006 .

[17]  C. Xie,et al.  Experimental demonstration of tripartite entanglement and controlled dense coding for continuous variables. , 2002, Physical review letters.

[18]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[19]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[20]  Xiaolong Su,et al.  Quantum communication network utilizing quadripartite entangled states of optical field , 2009 .

[21]  Olivier Pfister,et al.  Experimental realization of multipartite entanglement of 60 modes of a quantum optical frequency comb. , 2013, Physical review letters.

[22]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[23]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[24]  Xiaolong Su,et al.  Swapping of Gaussian Einstein-Podolsky-Rosen steering , 2017, 1706.03176.

[25]  Shota Yokoyama,et al.  Ultra-large-scale continuous-variable cluster states multiplexed in the time domain , 2013, Nature Photonics.

[26]  P. Loock Examples of Gaussian cluster computation , 2006, quant-ph/0606212.

[27]  Timothy C. Ralph,et al.  Continuous Variable Entanglement Swapping , 1999 .

[28]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[29]  C. Fabre,et al.  Wavelength-multiplexed quantum networks with ultrafast frequency combs , 2013, Nature Photonics.

[30]  Xiaolong Su,et al.  Quantum Entanglement Swapping between Two Multipartite Entangled States. , 2016, Physical review letters.

[31]  N. C. Menicucci,et al.  Quantum Computing with Continuous-Variable Clusters , 2009, 0903.3233.

[32]  Jian-Wei Pan,et al.  Experimental multiparticle entanglement swapping for quantum networking. , 2009, Physical review letters.

[33]  A. Furusawa,et al.  High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. , 2005, Physical review letters.

[34]  P. Knight,et al.  Multiparticle generalization of entanglement swapping , 1998 .

[35]  A. Furusawa,et al.  Demonstration of a quantum teleportation network for continuous variables , 2004, Nature.

[36]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[37]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[38]  Nicolas C. Menicucci,et al.  Graphical calculus for Gaussian pure states , 2010, 1007.0725.

[39]  P. Loock,et al.  Building Gaussian cluster states by linear optics , 2006, quant-ph/0610119.

[40]  Christian Weedbrook,et al.  Quantum secret sharing with continuous-variable cluster states , 2013, 1304.8128.

[41]  Xiaolong Su,et al.  Experimental demonstration of unconditional entanglement swapping for continuous variables. , 2004, Physical review letters.

[42]  F. Sciarrino,et al.  Delayed-choice entanglement swapping with vacuum–one-photon quantum states , 2002, quant-ph/0201019.

[43]  A. Furusawa,et al.  Entanglement swapping between discrete and continuous variables. , 2014, Physical review letters.