The Maximum Multiflow Problems with Bounded Fractionality

We consider the weighted maximum multiflow problem with respect to a terminal weight. We show that if the dimension of the tight span associated with the weight is at most 2, then this problem has a 1/12-integral optimal multiflow for every Eulerian supply graph. This result solves a weighted generalization of Karzanov's conjecture for classifying commodity graphs with finite fractionality. In addition, our proof technique proves the existence of an integral or half-integrality optimal multiflow for a large class of multiflow maximization problems, and it gives a polynomial time algorithm.

[1]  Alexander V. Karzanov,et al.  Minimum 0-Extensions of Graph Metrics , 1998, Eur. J. Comb..

[2]  Hiroshi Hirai,et al.  Tight spans of distances and the dual fractionality of undirected multiflow problems , 2009, J. Comb. Theory, Ser. B.

[3]  Victor Chepoi,et al.  Graphs of Some CAT(0) Complexes , 2000, Adv. Appl. Math..

[4]  Éva Tardos,et al.  A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..

[5]  Alexander V. Karzanov,et al.  Minimum (2, r)-Metrics and Integer Multiflows , 1996, Eur. J. Comb..

[6]  Andreas W. M. Dress,et al.  Gated sets in metric spaces , 1987 .

[7]  Michael Lomonosov,et al.  On return path packing , 2004, Eur. J. Comb..

[8]  Alexander V. Karzanov,et al.  On one maximum multiflow problem and related metrics , 1998, Discret. Math..

[9]  J. Isbell Six theorems about injective metric spaces , 1964 .

[10]  T. C. Hu Multi-Commodity Network Flows , 1963 .

[11]  Hiroshi Hirai,et al.  Bounded fractionality of the multiflow feasibility problem for demand graph K3+K3 and related maximization problems , 2012, J. Comb. Theory, Ser. B.

[12]  Alexander V. Karzanov,et al.  Metrics with finite sets of primitive extensions , 1998 .

[13]  L. Lovász On some connectivity properties of Eulerian graphs , 1976 .

[14]  András Frank,et al.  On Integer Multiflow Maximization , 1997, SIAM J. Discret. Math..

[15]  A. V. Karzanov Polyhedra related to undirected multicommodity flows , 1989 .

[16]  Hiroshi Hirai,et al.  Folder Complexes and Multiflow Combinatorial Dualities , 2011, SIAM J. Discret. Math..

[17]  Shimon Even,et al.  Graph Algorithms: Flow in Networks , 2011 .

[18]  A. Dress Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: A note on combinatorial properties of metric spaces , 1984 .

[19]  Alexander V. Karzanov,et al.  A Combinatorial Algorithm for the Minimum (2, r)-Metric Problem and Some Generalizations , 1998, Comb..

[20]  H. Hirai Characterization of the Distance between Subtrees of a Tree by the Associated Tight Span , 2006 .