Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties.

[1]  Taeghwan Hyeon,et al.  Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent , 2009 .

[2]  Fuyou Li,et al.  High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors. , 2009, Analytical chemistry.

[3]  Zhi-Gang Chen,et al.  Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors. , 2009, Biomaterials.

[4]  Shiwei Wu,et al.  Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals , 2009, Proceedings of the National Academy of Sciences.

[5]  Xiaogang Liu,et al.  Recent Advances in the Chemistry of Lanthanide‐Doped Upconversion Nanocrystals , 2009 .

[6]  R. Ma,et al.  Oriented monolayer film of Gd2O3:0.05 Eu crystallites: quasi-topotactic transformation of the hydroxide film and drastic enhancement of photoluminescence properties. , 2009, Angewandte Chemie.

[7]  Mizuo Maeda,et al.  Cyclic RGD peptide-labeled upconversion nanophosphors for tumor cell-targeted imaging. , 2009, Biochemical and biophysical research communications.

[8]  Tymish Y. Ohulchanskyy,et al.  Combined Optical and MR Bioimaging Using Rare Earth Ion Doped NaYF4 Nanocrystals , 2009 .

[9]  Fuyou Li,et al.  Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells. , 2009, Chemistry.

[10]  Zhigang Chen,et al.  Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. , 2009, Analytical chemistry.

[11]  C. Yeh,et al.  Bifunctional Gd2O3/C Nanoshells for MR Imaging and NIR Therapeutic Applications , 2009 .

[12]  Louis A. Cuccia,et al.  Controlled Synthesis and Water Dispersibility of Hexagonal Phase NaGdF4:Ho3+/Yb3+ Nanoparticles , 2009 .

[13]  Shan Jiang,et al.  Multicolor Core/Shell‐Structured Upconversion Fluorescent Nanoparticles , 2008 .

[14]  Zhigang Chen,et al.  Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels , 2008 .

[15]  Tymish Y. Ohulchanskyy,et al.  High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. , 2008, Nano letters.

[16]  Yongming Zhang,et al.  Red and green upconversion luminescence of Gd2O3 : Er3+, Yb3+ nanoparticles , 2008 .

[17]  C. Yeh,et al.  Superparamagnetic Hollow and Paramagnetic Porous Gd2O3 Particles , 2008 .

[18]  Xiaogang Liu,et al.  Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. , 2008, Journal of the American Chemical Society.

[19]  H. Sheu,et al.  Gd2O(CO3)2 · H2O Particles and the Corresponding Gd2O3: Synthesis and Applications of Magnetic Resonance Contrast Agents and Template Particles for Hollow Spheres and Hybrid Composites , 2008 .

[20]  Yong Zhang,et al.  Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. , 2008, Biomaterials.

[21]  Fuyou Li,et al.  Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. , 2008, Journal of the American Chemical Society.

[22]  Thomas Nann,et al.  A four-color colloidal multiplexing nanoparticle system. , 2008, ACS nano.

[23]  Weibo Cai,et al.  Nanoplatforms for targeted molecular imaging in living subjects. , 2007, Small.

[24]  Teodor Veres,et al.  Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning , 2007 .

[25]  Thomas J. Meade,et al.  Multimodal MRI contrast agents , 2007, JBIC Journal of Biological Inorganic Chemistry.

[26]  P. Perriat,et al.  Hybrid gadolinium oxide nanoparticles: multimodal contrast agents for in vivo imaging. , 2007, Journal of the American Chemical Society.

[27]  Yadong Li,et al.  Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4 Nanocrystals , 2007 .

[28]  G. Chow,et al.  Synthesis of Hexagonal‐Phase NaYF4:Yb,Er and NaYF4:Yb,Tm Nanocrystals with Efficient Up‐Conversion Fluorescence , 2006 .

[29]  A. Tanimoto,et al.  Gadolinium-based hybrid nanoparticles as a positive MR contrast agent. , 2006, Journal of the American Chemical Society.

[30]  Louis A. Cuccia,et al.  Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. , 2006, Journal of the American Chemical Society.

[31]  Ya-Wen Zhang,et al.  High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. , 2006, Journal of the American Chemical Society.

[32]  R. Prosser,et al.  Water-Soluble GdF3 and GdF3/LaF3 NanoparticlesPhysical Characterization and NMR Relaxation Properties , 2006 .

[33]  Eri Shibata,et al.  Enhancement effects and relaxivities of gadolinium-DTPA at 1.5 versus 3 Tesla: a phantom study. , 2005, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[34]  Qing Peng,et al.  A general strategy for nanocrystal synthesis , 2005, Nature.

[35]  M. Haase,et al.  Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide‐Doped NaYF4 Nanocrystals , 2004 .

[36]  I. Honma,et al.  Self‐Assembly of the Mesoporous Electrode Material Li3Fe2(PO4)3 Using a Cationic Surfactant as the Template , 2004 .

[37]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[38]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.