Role of dimensionality in complex networks

Deep connections are known to exist between scale-free networks and non-Gibbsian statistics. For example, typical degree distributions at the thermodynamical limit are of the form , where the q-exponential form optimizes the nonadditive entropy Sq (which, for q → 1, recovers the Boltzmann-Gibbs entropy). We introduce and study here d-dimensional geographically-located networks which grow with preferential attachment involving Euclidean distances through . Revealing the connection with q-statistics, we numerically verify (for d = 1, 2, 3 and 4) that the q-exponential degree distributions exhibit, for both q and k, universal dependences on the ratio αA/d. Moreover, the q = 1 limit is rapidly achieved by increasing αA/d to infinity.

[1]  Jr.,et al.  Measurement of neutral mesons in p+p collisions at sqrt(s) = 200 GeV and scaling properties of hadron production , 2010, 1005.3674.

[2]  D. Mccomas,et al.  INVARIANT KAPPA DISTRIBUTION IN SPACE PLASMAS OUT OF EQUILIBRIUM , 2011 .

[3]  Grzegorz Wilk,et al.  Tsallis fits to p T spectra and multiple hard scattering in p p collisions at the LHC , 2013, 1305.2627.

[4]  M. P. Casado,et al.  Measurement of the inclusive isolated prompt photon cross section in pp collisions at s=8$$ \sqrt{s}=8 $$ TeV with the ATLAS detector , 2016 .

[5]  Y. Wang,et al.  Transverse momentum spectra of charged particles in proton-proton collisions at $\sqrt{s} = 900$~GeV with ALICE at the LHC , 2010 .

[6]  Bin Liu,et al.  Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty plasma. , 2008, Physical review letters.

[7]  S. Strogatz Exploring complex networks , 2001, Nature.

[8]  Constantino Tsallis,et al.  Classical spin systems with long-range interactions: universal reduction of mixing , 2001 .

[9]  J. Gibbs Elementary Principles in Statistical Mechanics: Developed with Especial Reference to the Rational Foundation of Thermodynamics , 1902 .

[10]  Kjell A. Doksum,et al.  Mathematical Statistics: Basic Ideas and Selected Topics, Volume I, Second Edition , 2015 .

[11]  Shlomo Havlin,et al.  Structural and functional properties of spatially embedded scale-free networks. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Hans J Herrmann,et al.  Spreading gossip in social networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  A. Macedo-Filho,et al.  Maximum entropy principle for Kaniadakis statistics and networks , 2013 .

[14]  P. Douglas,et al.  Tunable Tsallis distributions in dissipative optical lattices. , 2006, Physical review letters.

[15]  S. Ruffo,et al.  Clustering and relaxation in Hamiltonian long-range dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Stefan Thurner,et al.  Nonextensive aspects of self-organized scale-free gas-like networks , 2005 .

[17]  Andrea Benaglia,et al.  Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at root s=7 TeV , 2010 .

[18]  L. R. Silva,et al.  Scale-free homophilic network , 2013 .

[19]  J. G. Contreras,et al.  Measurement of electrons from semileptonic heavy-flavor hadron decays in pp collisions at s =2.76TeV , 2015 .

[20]  R. Cywinski,et al.  Generalized spin-glass relaxation. , 2009, Physical review letters.

[21]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[22]  M. K. Lee,et al.  Production of ω mesons in p + p , d + Au , Cu + Cu , and Au + Au collisions at √ sN N = 200 GeV , 2011 .

[23]  F Baldovin,et al.  Nonextensive Pesin identity: exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Y. Sawada,et al.  Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates , 2001 .

[25]  Mario H. Acuna,et al.  Tsallis Statistics of the Magnetic Field in the Heliosheath , 2006 .

[26]  Ernesto P. Borges,et al.  The standard map: From Boltzmann-Gibbs statistics to Tsallis statistics , 2015, Scientific Reports.

[27]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[28]  Vincent Richefeu,et al.  Experimental Validation of a Nonextensive Scaling Law in Confined Granular Media. , 2015, Physical review letters.

[29]  C. Tsallis,et al.  Influence of the interaction range on the thermostatistics of a classical many-body system , 2012, 1206.6133.

[30]  Classical infinite-range-interaction Heisenberg ferromagnetic model: metastability and sensitivity to initial conditions. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  M. K. Lee,et al.  Production of omega mesons in p plus p, d plus Au, Cu plus Cu, and Au plus Au collisions at root s(NN)=200 GeV , 2011, 1105.3467.

[32]  Alexander,et al.  Study of the production of ∧0/b and -B/0 hadrons in pp collisions and first measurement of the ∧0/b→ J/ψ pK- branching fraction , 2016 .

[33]  E. Curado,et al.  Deriving partition functions and entropic functionals from thermodynamics , 2014 .

[34]  Albert,et al.  Topology of evolving networks: local events and universality , 2000, Physical review letters.

[35]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[36]  C. Tsallis,et al.  Nonextensivity and Multifractality in Low-Dimensional Dissipative Systems , 1997, cond-mat/9709226.

[37]  A. Deppman,et al.  Nonextensivity of hadronic systems , 2012, 1210.1725.

[38]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[39]  R. DeVoe,et al.  Power-law distributions for a trapped ion interacting with a classical buffer gas. , 2009, Physical review letters.

[40]  A A Moreira,et al.  Thermostatistics of overdamped motion of interacting particles. , 2010, Physical review letters.

[41]  C. Tsallis,et al.  Breakdown of Exponential Sensitivity to Initial Conditions: Role of the Range of Interactions , 1998 .

[42]  The Atlas Collaboration,et al.  Charged-particle multiplicities in pp interactions measured with the ATLAS detector at the LHC , 2010, 1012.5104.

[43]  Hans J. Herrmann,et al.  Traffic gridlock on complex networks , 2012 .

[44]  Lucas Antiqueira,et al.  Analyzing and modeling real-world phenomena with complex networks: a survey of applications , 2007, 0711.3199.

[45]  C. Tsallis,et al.  Preferential attachment growth model and nonextensive statistical mechanics , 2004, cond-mat/0410459.

[46]  L. Lima,et al.  Controlling the range of interactions in the classical inertial ferromagnetic Heisenberg model: analysis of metastable states , 2014, 1409.5825.

[47]  Stefan Thurner Nonextensive statistical mechanics and complex scale-free networks , 2005 .

[48]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[49]  Walton,et al.  Equilibrium distribution of heavy quarks in fokker-planck dynamics , 2000, Physical review letters.

[50]  C. Tsallis,et al.  Nonextensive Entropy: Interdisciplinary Applications , 2004 .

[51]  P. Günter,et al.  Survey of applications , 1989 .

[52]  J. S. Andrade,et al.  Apollonian networks: simultaneously scale-free, small world, euclidean, space filling, and with matching graphs. , 2004, Physical review letters.

[53]  T. Tuuva,et al.  Search for new physics with jets and missing transverse momentum in pp collisions at $ \sqrt {s} = 7 $ TeV , 2011, 1106.4503.