Modulation of single-photon-level wave packets with two-component electromagnetically induced transparency

Coherent manipulation of single-photon wave packets is essentially important for optical quantum communication and quantum information processing. In this paper, we realize controllable splitting and modulation of single-photon-level pulses by using a tripod-type atomic medium. The adoption of two control beams enable us to store one signal pulse into superposition of two distinct atomic collective excitations. By controlling the time delay between the two control pulses, we observe splitting of a stored wave packet into two temporally-distinct modes. By controlling the frequency detuning of the control beams, we observe both temporal and frequency-domain interference of the retrieval signal pulses, which provides a method for pulse modulation and multi-splitting of the signal photons.