MESS (Mass-loss of Evolved StarS), a Herschel key program

MESS (Mass-loss of Evolved StarS) is a guaranteed time key program that uses the PACS and SPIRE instruments on board the Herschel space observatory to observe a representative sample of evolved stars, that include asymptotic giant branch (AGB) and post-AGB stars, planetary nebulae and red supergiants, as well as luminous blue variables, Wolf-Rayet stars and supernova remnants. In total, of order 150 objects are observed in imaging and about 50 objects inspectroscopy. This paper describes the target selection and target list, and the observing strategy. Key science projects are described, and illustrated using results obtained during Herschel’s science demonstration phase. Aperture photometry is given for the 70 AGB and post-AGB stars observed up to October 17, 2010, which constitutes the largest single uniform database of far-IR and sub-mm fluxes for late-type stars.

[1]  Y. Nazé,et al.  The multiwavelength view of hot, massive stars , 2011 .

[2]  M. Barlow,et al.  Warm water vapour in the sooty outflow from a luminous carbon star , 2010, Nature.

[3]  James J. Bock,et al.  Status of the SPIRE photometer data processing pipelines during the early phases of the Herschel Mission , 2010, Astronomical Telescopes + Instrumentation.

[4]  Kevin Xu,et al.  The data processing pipelines for the Herschel/SPIRE imaging Fourier transform spectrometer , 2010, Astronomical Telescopes + Instrumentation.

[5]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[6]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[7]  H. Rix,et al.  Herschel-PACS far-infrared photometry of two z > 4 quasars , 2010, 1005.5016.

[8]  M. Barlow,et al.  Detection of anhydrous hydrochloric acid, HCl, in IRC +10216 with the Herschel SPIRE and PACS spectrometers. Detection of HCl in IRC +10216 , 2010, 1005.4220.

[9]  D. Witherick,et al.  Herschel -SPIRE FTS spectroscopy of the carbon-rich objects AFGL 2688, AFGL 618, and NGC 7027 , 2010, 1005.3279.

[10]  D. Witherick,et al.  PACS and SPIRE spectroscopy of the red supergiant VY CMa , 2010, 1005.2952.

[11]  O. Krause,et al.  A Herschel PACS and SPIRE study of the dust content of the Cassiopeia A supernova remnant , 2010, 1005.2688.

[12]  J. Blommaert,et al.  The detached dust shells of AQ Andromedae, U Antliae, and TT Cygni , , 2010, 1005.2689.

[13]  D. Elbaz,et al.  HerMES: The SPIRE confusion limit , 2010, 1005.2207.

[14]  D. L. Clements,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel Space Observatory view of dust in M 81 , 2010 .

[15]  M. Barlow,et al.  Herschel PACS and SPIRE imaging of CW Leonis , 2010, 1005.1433.

[16]  R. Sahai,et al.  THE ASTROSPHERE OF THE ASYMPTOTIC GIANT BRANCH STAR IRC+10216 , 2010, 1001.4997.

[17]  T. Tanabé,et al.  The interface between the stellar wind and interstellar medium around R Cassiopeiae revealed by far-infrared imaging , 2009, 0911.4918.

[18]  M. Halpern,et al.  AKARI AND BLAST OBSERVATIONS OF THE CASSIOPEIA A SUPERNOVA REMNANT AND SURROUNDING INTERSTELLAR MEDIUM , 2009, 0910.1094.

[19]  Robert Mann,et al.  Astronomical Data Analysis Software and Systems XXI , 2012 .

[20]  J. Fabbri,et al.  The destruction and survival of dust in the shell around SN 2008S , 2009, 0907.0246.

[21]  R. Stompor,et al.  MADmap: A MASSIVELY PARALLEL MAXIMUM LIKELIHOOD COSMIC MICROWAVE BACKGROUND MAP-MAKER , 2009, 0906.1775.

[22]  S. Maddox,et al.  Accounting for the foreground contribution to the dust emission towards Kepler's supernova remnant , 2009, 0905.2564.

[23]  A. Andersen,et al.  Stellar sources of dust in the high-redshift Universe , 2009, 0905.1691.

[24]  S. Maddox,et al.  Cassiopeia A: dust factory revealed via submillimetre polarimetry , 2008, 0809.0887.

[25]  J. Puls,et al.  Mass loss from hot massive stars , 2008, 0811.0487.

[26]  Chris Pearson,et al.  The Herschel-SPIRE photometer data processing pipeline , 2008, Astronomical Telescopes + Instrumentation.

[27]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[28]  David A. Naylor,et al.  Apodizing functions for Fourier transform spectroscopy , 2007 .

[29]  J. Rho,et al.  Freshly Formed Dust in the Cassiopeia A Supernova Remnant as Revealed by the Spitzer Space Telescope , 2007, 0709.2880.

[30]  A. Zijlstra,et al.  The interaction of planetary nebulae and their AGB progenitors with the interstellar medium , 2007, 0709.2848.

[31]  L. Decin,et al.  The variable mass loss of the AGB star WX Piscium as traced by the CO J=1-0 through 7-6 lines and the dust emission , 2007, 0708.4107.

[32]  E. Dwek,et al.  The Evolution of Dust in the Early Universe with Applications to the Galaxy SDSS J1148+5251 , 2007, 0705.3799.

[33]  Berkeley,et al.  A Spitzer Space Telescope Study of SN 2003gd: Still No Direct Evidence that Core-Collapse Supernovae are Major Dust Factories , 2007, 0705.1439.

[34]  S. Bianchi,et al.  Dust formation and survival in supernova ejecta , 2007, 0704.0586.

[35]  B. Williams,et al.  Spitzer Space Telescope Observations of Kepler’s Supernova Remnant: A Detailed Look at the Circumstellar Dust Component , 2007, astro-ph/0703660.

[36]  A. Zijlstra,et al.  Detached shells as tracers of asymptotic giant branch-interstellar medium bow shocks , 2006 .

[37]  A. Zijlstra,et al.  Detached shells as tracers of AGB-ISM bow shocks , 2006, astro-ph/0607500.

[38]  A. Zijlstra,et al.  Detection of a Far-Infrared Bow Shock Nebula around R Hya: The First MIRIAD Results , 2006, astro-ph/0607303.

[39]  A. de Koter,et al.  Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles - I. Theoretical model – Mass-loss history unravelled in VY CMa , 2006, astro-ph/0606299.

[40]  J. Fabbri,et al.  Massive-Star Supernovae as Major Dust Factories , 2006, Science.

[41]  D. Massa,et al.  The Discordance of Mass-Loss Estimates for Galactic O-Type Stars , 2005, astro-ph/0510252.

[42]  An alternate estimate of the mass of dust in Cassiopeia A , 2004, astro-ph/0412533.

[43]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[44]  O. Krause,et al.  No cold dust within the supernova remnant Cassiopeia A , 2004, Nature.

[45]  D. A. Green,et al.  Far-infrared and sub-mm observations of the Crab nebula , 2004 .

[46]  D. A. Green,et al.  Far-infrared and submillimetre observations of the Crab nebula , 2004, astro-ph/0409469.

[47]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[48]  E. Dwek The Detection of Cold Dust in Cassiopeia A: Evidence for the Formation of Metallic Needles in the Ejecta , 2004, astro-ph/0401074.

[49]  R. Shah,et al.  Discovery of Multiple Molecular Shells in the Outer Envelope of IRC +10216 , 2004 .

[50]  L. Dunne,et al.  Cold Dust in Kepler’s Supernova Remnant , 2003 .

[51]  L. Dunne,et al.  Type II supernovae as a significant source of interstellar dust , 2003, Nature.

[52]  Xiaohui Fan,et al.  Dust emission from the most distant quasars , 2003, astro-ph/0305116.

[53]  M. Edmunds,et al.  Dust formation in early galaxies , 2003, astro-ph/0302566.

[54]  C. Joblin,et al.  Calculations of the far-infrared emission of C24H12 under interstellar conditions , 2002 .

[55]  R. McMahon,et al.  The SCUBA Bright Quasar Survey (SBQS): 850-μm observations of the z>≳ 4 sample , 2001, astro-ph/0109438.

[56]  Gary J. Melnick,et al.  Discovery of water vapour around IRC+10216 as evidence for comets orbiting another star , 2001, Nature.

[57]  R. G. McMahon,et al.  A 1.2 mm MAMBO/IRAM-30 m survey of dust emission from the highest redshift PSS quasars , 2001, astro-ph/0107005.

[58]  P. Cox,et al.  ISO LWS observations of planetary nebula fine‐structure lines , 2001 .

[59]  P. Ferrara Dust Formation in Primordial Type II Supernovae , 2000, astro-ph/0009176.

[60]  User Manual for DUSTY , 1999, astro-ph/9910475.

[61]  I. Smail,et al.  A Deep Submillimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution , 1997, astro-ph/9708135.

[62]  A. Marston A Survey of Nebulae around Galactic Wolf-Rayet Stars in the Southern Sky. III. Survey Completion and Conclusions , 1997 .

[63]  D. Hutsemékers Dust in LBV-type Nebulae , 1997 .

[64]  Mark Clampin,et al.  Nebulae around Luminous Blue Variables: A Unified Picture , 1995 .

[65]  Linda J. Smith,et al.  Metal Enrichment, Dust, and Star Formation in Galaxies at High Redshifts. III. Zn and CR Abundances for 17 Damped Lyman-Alpha Systems , 1994 .

[66]  G. Knapp,et al.  Circumstellar shells resolved in the IRAS survey data. I - Data processing procedure, results, and confidence tests , 1993 .

[67]  G. J. Matthews,et al.  Asymptotic-giant-branch stars , 1992, Nature.

[68]  D. Hollenbach,et al.  Molecule Formation and Infrared Emission in Fast Interstellar Shocks. III. Results for J Shocks in Molecular Clouds , 1989 .

[69]  de T. Jong,et al.  The Infrared Astronomical Satellite (IRAS) mission , 1984 .