Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance.

[1]  K. Matsuzaki,et al.  Polar Angle as a Determinant of Amphipathic α-Helix-Lipid Interactions: A Model Peptide Study , 2000 .

[2]  M. Dathe,et al.  Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. , 1999, Biochimica et biophysica acta.

[3]  B. Bechinger,et al.  The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state NMR spectroscopy. , 1999, Biochimica et biophysica acta.

[4]  S. Blondelle,et al.  Lipid-induced conformation and lipid-binding properties of cytolytic and antimicrobial peptides: determination and biological specificity. , 1999, Biochimica et biophysica acta.

[5]  K. Matsuzaki Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. , 1999, Biochimica et biophysica acta.

[6]  Y. Shai,et al.  Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. , 1999, Biochimica et biophysica acta.

[7]  D. Williams,et al.  Kinetic analysis of antibody-antigen interactions at a supported lipid monolayer. , 1999, Analytical biochemistry.

[8]  D. Josić,et al.  Use of surface plasmon resonance for studies of protein-protein and protein-phospholipid membrane interactions. Application to the binding of factor VIII to von Willebrand factor and to phosphatidylserine-containing membranes. , 1999, Journal of chromatography. A.

[9]  K. Matsuzaki,et al.  Magainins as paradigm for the mode of action of pore forming polypeptides. , 1998, Biochimica et biophysica acta.

[10]  W. Wang,et al.  The Dependence of Membrane Permeability by the Antibacterial Peptide Cecropin B and Its Analogs, CB-1 and CB-3, on Liposomes of Different Composition* , 1998, The Journal of Biological Chemistry.

[11]  D. Williams,et al.  Surface plasmon resonance analysis at a supported lipid monolayer. , 1998, Biochimica et biophysica acta.

[12]  M. Wenk,et al.  Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation. , 1998, Biochemistry.

[13]  A. Ghosh,et al.  Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function. , 1997, Biochemistry.

[14]  B. Bechinger,et al.  Structure and Functions of Channel-Forming Peptides: Magainins, Cecropins, Melittin and Alamethicin , 1997, The Journal of Membrane Biology.

[15]  D. Myszka,et al.  Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. , 1997, Current opinion in biotechnology.

[16]  R. Karlsson,et al.  Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. , 1997, Journal of immunological methods.

[17]  S J Ludtke,et al.  Membrane pores induced by magainin. , 1996, Biochemistry.

[18]  E. Krause,et al.  Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes. , 1996, Biochemistry.

[19]  J. Werkmeister,et al.  Dimerization of truncated melittin analogues results in cytolytic peptides. , 1996, The Biochemical journal.

[20]  R C Stevens,et al.  Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. , 1996, Biochemistry.

[21]  W. Sawyer,et al.  Characterisation of lipid‐protein interactions using a surface plasmon resonance biosensor , 1996, Biochemistry and molecular biology international.

[22]  L. Freedman,et al.  Modulation of nuclear receptor interactions by ligands: kinetic analysis using surface plasmon resonance. , 1996, Biochemistry.

[23]  S. Zakharov,et al.  Characterization of electrostatic and nonelectrostatic components of protein--membrane binding interactions. , 1996, Biochemistry.

[24]  A. Szabó,et al.  Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). , 1995, Current opinion in structural biology.

[25]  I. Chaiken,et al.  Interpreting complex binding kinetics from optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and numerical integration. , 1995, Analytical biochemistry.

[26]  N. Fujii,et al.  Molecular basis for membrane selectivity of an antimicrobial peptide, magainin 2. , 1995, Biochemistry.

[27]  R. Houghten,et al.  The Role of Amphipathicity in the Folding, Self-association and Biological Activity of Multiple Subunit Small Proteins (*) , 1995, The Journal of Biological Chemistry.

[28]  P. Nilsson,et al.  Real-time monitoring of DNA manipulations using biosensor technology. , 1995, Analytical biochemistry.

[29]  R. Hancock,et al.  Cationic bactericidal peptides. , 1995, Advances in microbial physiology.

[30]  R. Karlsson,et al.  Real-time competitive kinetic analysis of interactions between low-molecular-weight ligands in solution and surface-immobilized receptors. , 1994, Analytical biochemistry.

[31]  R. Fisher,et al.  Surface plasmon resonance based methods for measuring the kinetics and binding affinities of biomolecular interactions. , 1994, Current opinion in biotechnology.

[32]  R. Nagaraj,et al.  Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure-function correlations and membrane-perturbing abilities. , 1994, Biochimica et biophysica acta.

[33]  S. White,et al.  Quantitation of electrostatic and hydrophobic membrane interactions by equilibrium dialysis and reverse-phase HPLC. , 1993, Analytical biochemistry.

[34]  F. Richards,et al.  Design, synthesis, and properties of a photoactivatable membrane-spanning phospholipidic probe , 1993 .

[35]  Claus Duschl,et al.  Protein binding to supported lipid membranes: investigation of the cholera toxin-ganglioside interaction by simultaneous impedance spectroscopy and surface plasmon resonance , 1993 .

[36]  P. Balaram,et al.  Interaction of melittin with endotoxic lipid A. , 1992, Biochimica et biophysica acta.

[37]  N. Fujii,et al.  Interactions of an antimicrobial peptide, tachyplesin I, with lipid membranes. , 1991, Biochimica et biophysica acta.

[38]  M. Sansom The biophysics of peptide models of ion channels. , 1991, Progress in biophysics and molecular biology.

[39]  J. Seelig,et al.  Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. , 1990, Biochemistry.

[40]  S H White,et al.  The nature of the hydrophobic binding of small peptides at the bilayer interface: implications for the insertion of transbilayer helices. , 1989, Biochemistry.

[41]  F. Jähnig,et al.  The structure of melittin in membranes. , 1986, Biophysical journal.

[42]  D. Hultmark,et al.  Sequence and specificity of two antibacterial proteins involved in insect immunity , 1981, Nature.

[43]  Y H Chen,et al.  Determination of the helix and beta form of proteins in aqueous solution by circular dichroism. , 1974, Biochemistry.

[44]  E Habermann,et al.  Bee and wasp venoms. , 1972, Science.