MPGMRES : A GENERALIZED MINIMUM RESIDUAL METHOD WITH MULTIPLE PRECONDITIONERS

Standard Krylov subspace methods only allow the user to choose a single preconditioner, although in many situations there may be a number of possibilities. Here we describe an extension of GMRES that allows the use of more than one preconditioner. We make some theoretical observations, propose a practical algorithm, and present numerical results from problems in domain decomposition and PDE-constrained optimization. Our results illustrate the applicability and potential of the proposed approach.

[1]  M. Sadkane,et al.  Exact and inexact breakdowns in the block GMRES method , 2006 .

[2]  Blanca Ayuso de Dios,et al.  A Combined Preconditioning Strategy for Nonsymmetric Systems , 2012, SIAM J. Sci. Comput..

[3]  Andrew J. Wathen,et al.  A Preconditioner for the Steady-State Navier-Stokes Equations , 2002, SIAM J. Sci. Comput..

[4]  H. Elman,et al.  Efficient preconditioning of the linearized NavierStokes equations for incompressible flow , 2001 .

[5]  D. O’Leary,et al.  A Krylov multisplitting algorithm for solving linear systems of equations , 1993 .

[6]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[7]  Jörg Liesen,et al.  A Framework for Deflated and Augmented Krylov Subspace Methods , 2012, SIAM J. Matrix Anal. Appl..

[8]  S. Lennart Johnsson,et al.  Alternating direction methods on multiprocessors , 1987 .

[9]  D. O’Leary,et al.  Multi-Splittings of Matrices and Parallel Solution of Linear Systems , 1985 .

[10]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[11]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[12]  A. Wathen Nonstandard inner products and preconditioned iterative methods , 2011 .

[13]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .

[14]  F. Tröltzsch Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .

[15]  H. Sadok,et al.  ALGEBRAIC PROPERTIES OF THE BLOCK GMRES AND BLOCK ARNOLDI METHODS , 2009 .

[16]  Axel Ruhe Implementation aspects of band Lanczos algorithms for computation of eigenvalues of large sparse sym , 1979 .

[17]  John N. Shadid,et al.  Block Preconditioners Based on Approximate Commutators , 2005, SIAM J. Sci. Comput..

[18]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[19]  R. S. Chen,et al.  Multipreconditioned GMRES method for electromagnetic wave scattering problems , 2008 .

[20]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[21]  Marcus Sarkis,et al.  Optimal left and right additive Schwarz preconditioning for minimal residual methods with Euclidean and energy norms , 2007 .

[22]  R. Freund Model reduction methods based on Krylov subspaces , 2003, Acta Numerica.

[23]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[24]  Robert Bridson,et al.  A Multipreconditioned Conjugate Gradient Algorithm , 2005, SIAM J. Matrix Anal. Appl..

[25]  Henri Calandra,et al.  Flexible Variants of Block Restarted GMRES Methods with Application to Geophysics , 2012, SIAM J. Sci. Comput..

[26]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[27]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[28]  Andrew J. Wathen,et al.  Combination preconditioning of saddle point systems for positive definiteness , 2013, Numer. Linear Algebra Appl..

[29]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[30]  Valeria Simoncini,et al.  On the Occurrence of Superlinear Convergence of Exact and Inexact Krylov Subspace Methods , 2005, SIAM Rev..

[31]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[32]  Martin Stoll,et al.  Combination Preconditioning and the Bramble-Pasciak+ Preconditioner , 2008, SIAM J. Matrix Anal. Appl..

[33]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[34]  Chen Greif,et al.  Additive Schwarz with variable weights , 2014 .

[35]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[36]  Joachim Schöberl,et al.  Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..

[37]  Andrew J. Wathen,et al.  Optimal Solvers for PDE-Constrained Optimization , 2010, SIAM J. Sci. Comput..

[38]  Pierre Gosselet,et al.  A domain decomposition strategy to efficiently solve structures containing repeated patterns , 2009, 1208.6387.

[39]  Daniel B. Szyld,et al.  An Algebraic Convergence Theory for Restricted Additive Schwarz Methods Using Weighted Max Norms , 2001, SIAM J. Numer. Anal..

[40]  M. Sadkane Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue problems , 1993 .