Numerical analysis of the supercontinuum spectrum generation in a couple of photonic crystal fibers with different structure by using the RK4IP method

In this work, we performed a numerical analysis of the supercontinuum spectrum generation in a couple of photonic crystal fibers with different structure. The proposed configuration initially has an input pulse with hyperbolic secant profile to generate noise-like pulses as output signal, by the Runge-Kutta method (RK4IP). By using the same configuration, now these noise-like pulses are used as pump for supercontinuum generation obtaining a broad and good flatness spectrum. The numerical analysis presented here demonstrates the potential of noise-like pulses from a passively mode-locked fiber laser for broadband spectrum generation combining two different photonic crystal fibers. Besides this paper helps to understand the phenomena of supercontinuum generation which is mainly related to Raman self-frequency shift.

[1]  Y. Silberberg,et al.  Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser. , 1997, Optics letters.

[2]  A. A. Rieznik,et al.  Optimum Integration Procedures for Supercontinuum Simulation , 2012, IEEE Photonics Journal.

[3]  Everardo Vargas-Rodriguez,et al.  Estudio experimental sobre la evolución de los efectos no lineales que generan un espectro supercontinuo en fibras de cristal fotónico usando pulsos con duración de ns , 2011 .

[4]  O. Pottiez,et al.  Experimental study on a broad and flat supercontinuum spectrum generated through a system of two PCFs , 2013 .

[5]  Hermann A. Haus,et al.  Raman response function of silica-core fibers , 1989, Annual Meeting Optical Society of America.

[6]  M. Rosenbluh,et al.  Spatial modes in a PCF fiber generated continuum , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[7]  Daniel L Marks,et al.  Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography. , 2002, Optics letters.

[8]  Keith J. Blow,et al.  Theoretical description of transient stimulated Raman scattering in optical fibers , 1989 .

[9]  J. Dudley,et al.  Supercontinuum generation in photonic crystal fiber , 2006 .

[10]  David J. Richardson,et al.  Sensing with microstructured optical fibres , 2001 .

[11]  J. Hult,et al.  A Fourth-Order Runge–Kutta in the Interaction Picture Method for Simulating Supercontinuum Generation in Optical Fibers , 2007, Journal of Lightwave Technology.

[12]  Pedro Corredera,et al.  Supercontinuum generation using a continuous-wave Raman fiber laser , 2003 .

[13]  H. Haus,et al.  Gigahertz-repetition-rate mode-locked fiber laser for continuum generation. , 2000, Optics letters.

[14]  G. Ghosh,et al.  Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses , 1994 .

[15]  J R Taylor,et al.  Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation. , 2006, Optics express.

[16]  Kunimasa Saitoh,et al.  Empirical relations for simple design of photonic crystal fibers. , 2005, Optics express.