Scaling law for the transient behavior of type-II neuron models.

We study the transient regime of type-II biophysical neuron models and determine the scaling behavior of relaxation times tau near but below the repetitive firing critical current, tau approximately or equal to C(I(c)-I)(-Delta). For both the Hodgkin-Huxley and Morris-Lecar models we find that the critical exponent is independent of the numerical integration time step and that both systems belong to the same universality class, with Delta=1/2. For appropriately chosen parameters, the FitzHugh-Nagumo model presents the same generic transient behavior, but the critical region is significantly smaller. We propose an experiment that may reveal nontrivial critical exponents in the squid axon.

[1]  Mauro Copelli,et al.  Response of electrically coupled spiking neurons: a cellular automaton approach. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  D. Chialvo Are our senses critical? , 2006 .

[3]  Takashi Kunisawa,et al.  Critical Slowing-Down near the Transition Region from the Resting to Time-Ordered States in Squid Giant Axons , 1978 .

[4]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[5]  E. Adrian,et al.  The impulses produced by sensory nerve endings , 1926, The Journal of physiology.

[6]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[7]  勇一 作村,et al.  Biophysics of Computation , 2001 .

[8]  F. Jülicher,et al.  Auditory sensitivity provided by self-tuned critical oscillations of hair cells. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Arnaud Tonnelier,et al.  The McKean's Caricature of the Fitzhugh--Nagumo Model I. The Space-Clamped System , 2003, SIAM J. Appl. Math..

[10]  Dante R. Chialvo Critical brain networks , 2004 .

[11]  B. A. Huberman,et al.  Theory of intermittency , 1982 .

[12]  O. Kinouchi,et al.  Optimal dynamical range of excitable networks at criticality , 2006, q-bio/0601037.

[13]  C. Morris,et al.  Voltage oscillations in the barnacle giant muscle fiber. , 1981, Biophysical journal.

[14]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[15]  Christof Koch,et al.  Biophysics of Computation: Information Processing in Single Neurons (Computational Neuroscience Series) , 1998 .

[16]  Paul Manneville,et al.  Intermittency and the Lorenz model , 1979 .

[17]  H. Cavalcante,et al.  Logarithmic periodicities in the bifurcations of type-I intermittent chaos. , 2004, Physical review letters.

[18]  J. Kurths,et al.  Coherence Resonance in a Noise-Driven Excitable System , 1997 .

[19]  B. M. Fulk MATH , 1992 .

[20]  D. Johnston,et al.  Foundations of Cellular Neurophysiology , 1994 .

[21]  H. McKean Nagumo's equation , 1970 .